MNS UNIVERSITY OF AGRICULTURE MULTAN

Registrar Office (Academics Section) Tel: 061-9201560, E-mail: <u>dr.acad@mnsuam.edu.pk</u>

APPROVED SCHEME OF STUDIES

BS Data Science

DEPARTMENT OF COMPUTER SCIENCE

Approved vide	Meeting	Date
Academic Council	7 th	09.08.2021
Syndicate	31 st	10.10.2021

Curriculum of Bachelor of Data Science - BS (DS)

Program's Aims & Objectives:

The aim of BS (Data Science) is to integrate scientific methods from statistics, computer science and data-based business management to extract knowledge from data and drive decision making. Graduates are prepared to meet the challenges at the intersection between big data, business analytics, and other emerging fields. Department of Computer Science at MNS University of Agriculture felt the need to impart knowledge in this innovative area of study. A BS Program is being proposed in this area which will impart the skills of large data handling and analysis to the students. By the time of graduation, the students develop an ability to:

- 1. Knowledge of how to apply analytic techniques and algorithms (including statistical and data mining approaches) to large data sets to extract meaningful insights.
- 2. Acquisition of hands-on experience with relevant software tools, languages, data models, and environments for data processing and visualization.
- 3. Ability to communicate results of analysis effectively (visually and verbally) to a broad audience.
- 4. Ability to extract useful knowledge from data in various forms that help drive evidencebased decisions.
- 5. To prepare students to stand out in one of the world's fastest growing careers

Structure of BS Data Science:

The structure of BS (Data Science) program is dynamic and provides basis for various options including Breadth-Based and Integrated Breadth & Depth-Based specializations. Students may choose a particular option, which is the most appropriate to their planned future career. Followings are the distribution of total credit hours:

Sr.#	Category	Credit Hours
1	Computing Courses	
	Core	39
2	Data Science Courses	
	Core	18
	Elective	12

3	Computer Science Core	18
	University Elective Courses	12
	Mathematics and Science Foundation	12
	General Education Courses	19
	Total Credit Hours:	130

Course Category	Credit Hrs
Comp. Core	39
General Education	19
Data Science Core	18
CS Core	18
Data Science	
Elective	12
University Elective	12
Mathematics and	
Science Foundation	12

BS (Data Science)

Program Structure:

BS (Data Science) has a dual emphasis on basic principles of statistics and computer science, with foundational training in statistical and mathematical aspects of data analysis. This program develops foundation on broad computer science principles, including algorithms, data structures, data management and machine learning. This program will prepare graduates for a career in data analysis, combining foundational statistical concepts with computational principles from computer science.

PROPOSED CURRICULUM FOR BS (DATA SCIENCE)

Following are the proposed areas which are required to cover to complete the degree. Covered

areas consist of core courses (compulsory), foundation courses, general courses and electives. Areas Covered in BS (DS)

Course Group	Min No of Courses	
General Education	19	7
University Electives	12	4
Mathematics & Science Foundation	12	4
Computing Core	39	10
Computer Science Core	18	5
DS Core (Domain Core)	18	6
DS Electives (Domain Electives)	12	4
TOTAL	130	40
General Education Courses 19	O Credit Hours	
Course Title		Credit Hour
Introduction to Information & Communication Te (ICT)	3 (2-1)	
English Composition & Comprehension	3 (3-0)	
Communication & Presentation Skills	3 (3-0)	
Islamic Studies	2 (2-0)	
Technical & Business English Writing	3 (3-0)	
Pakistan Studies		2 (2-0)
Professional Practices	3 (3-0)	
]	Fotal Credits:	19 (18-1)

University Elective Courses 12 Credit Hours (Select any 4 courses)

Course Title	Credit Hour
Principles of Accounting	3 (3-0)
Principles of Economics	3 (3-0)
Principles of Psychology	3 (3-0)
Organizational Behaviour	3 (3-0)

Total Credits:	24 (24-0)
Introduction and Role of ICT in Agriculture	3 (2-1)
IoT in Digital Agriculture	3 (3-0)
Entrepreneurship	3 (3-0)
Remote Sensing and GIS Applications in Animal Sciences	3 (2-1)

Main and Science Foundation courses 12 Credit Hours			
Course Title		Credit Hour	
Calculus & Analytical Geometry		3 (3-0)	
Linear Algebra		3 (3-0)	
Probability & Statistics		3 (3-0)	
Differential Equations		3 (3-0)	
	Total Credits:	12 (12-0)	

Math and Science Foundation courses 12 Credit Hours

Computing Core Courses (Comp	Credit Hour
Programming Fundamentals	4 (3-1)
Object Oriented Programming	4 (3-1)
Discrete Structures	3 (3-0)
Data Structures & Algorithms	4 (3-1)
Software Engineering	3 (3-0)
Operating System	4 (3-1)
Computer Networks	4 (3-1)
Database Systems	4 (3-1)
Information Security	3 (3-0)
Final Year Project	6 (0-6)
	Total 39 (27-12)

Computing Core Courses (Compulsory) Courses

Course Title		Credit Hour
		4 (3-1)
Artificial Intelligence		4 (3-1)
Digital Logic Design		3 (3-0)
Design & Analysis of Algorithms		4 (3-1)
Computer Organization & Assembly Language		3 (2-1)
Parallel & Distributed Computing	Total Credits:	18 (14-4)

Computer Science Core Courses 18 Credit Hours

Course Title	Credit
	Hours
Advance Statistics	3 (3-0)
Introduction to Data Science	3 (2-1)
Data Mining	3 (2-1)
Data Visualization	3 (2-1)
Data Warehousing & Business Intelligence	3 (2-1)
Big Data Analytics	3 (2-1)
TOTAL	18 (13-5)
DS Electives 12 Credit Hours	
Course Title	Credit
Course Thie	Hours
Machine Learning	3 (2-1)
Deep Learning	3 (3-0)
Theory of Automata & Formal Languages	3 (3-0)
Cloud Computing	3 (3-0)

DS Core Courses 18 Credit Hours

Scheme of Study Bachelor of Science in Data Science BS (DS)

4 years Degree Program (Bachelor of Sciences in Data Science)

40 courses covering 130 credit hours spread over 8 semesters

Eligibility Criteria:

The minimum requirements for admission in BSDS are:

- 1. F.Sc. (Pre-Engineering/Pre-Medical)/ ICS/ A-level students (with Mathematics/Biology).
- Minimum 50% marks in intermediate. 2.
- 3. DAE (specialized in electrical, mechanical, electronics and Telecommunication) (two (02) reserved seats only).

Note: Students of F.Sc. (Pre -Medical)/ A-level students (with Biology) must have to take deficiency courses of Mathematics of 6 credit hours within one year of their regular studies.

Seme	ster – I					
Sr. #	Course Code	Course Title	Pre- Requisite	Cr. Division	Category	Credit Hours
1.	CS-301	Introduction to Information & Communication Technologies (ICT)		3 (2-1)	Gen Edu	3
2.	CS-303	Programming Fundamentals		4 (3-1)	Comp. Core	4
3.	*305	Uni. Elective-I		3(3-0)	Uni. Elective	3
4	SSH-307	Pakistan Studies		2(2-0)	Gen Edu	2
5.	ENG- 309	English Composition & Comprehension		3(3-0)	Gen Edu	3
	Total Credit Hours:					15
	UAM- 301	Social & Religious Tolerance		2(2-0)		2

Seme	ester – II			1		
Sr. #	Course Code	Course Title	Pre- Requisite	Cr. Division	Category	Credit Hours
6.	CS-302	Discrete Structures	•	3(3-0)	Comp. Core	3
7.	CS-304	Object Oriented Programming	CS-303	4(3-1)	Comp. Core	4
8.	MATH - 306	Calculus & Analytical Geometry		3(3-0)	Math & Sci. Foundation	3
9.	ENG- 308	Communication & Presentation Skills		3(3-0)	Gen Edu	3
10.	IS 310 / SSH-310	Islamic Studies / Ethics (For foreigner / Non- Muslims)		2(2-0)	Gen Edu	2
11.	CS-312	Digital Logic Design		4(3-1)	CS Core	4
				Total	Credit Hours:	19
	UAM- 301	Citizenship Education & Community Engagement		3(2-1)		3
	QS-302	Quranic Studies		1(1-0)		1
Seme	ster – III			I		
Sr. #	Course Code	Course Title	Pre- Requisite	Cr. Division	Category	Credit Hours
12.	CS-401	Data Structures & Algorithms		4(3-1)	Comp. Core	4
13.	CS- 403	Computer Organization & Assembly Language		4(3-1)	CS Core	4
14.	MATH- 405	Linear Algebra		3(3-0)	Math & Sci. Foundation	3
15.	ENG- 407	Technical & Business English Writing		3(3-0)	Gen Edu	3

16.	*409	Uni. Elective-II		3(3-0)	Uni. Elective	3
				Total	Credit Hours:	17
Seme	ester – IV					
Sr. #	Course Code	Course Title	Pre- Requisite	Cr. Division	Category	Credit Hours
17.	CS-402	Software Engineering		3(3-0)	Comp. Core	3
18.	CS-404	Operating Systems		4(3-1)	Comp. Core	4
19.	CS-406	Database Systems		4(3-1)	Comp. Core	4
20.	CS-408	Design & Analysis of Algorithms	CS-401	3(3-0)	CS Core	3
21.	DS-410	Introduction to Data Science		3(2-1)	DS Core	3
22.	STAT- 412	Probability & Statistics		3(3-0)	Math & Sci. Foundation	3
				Total	Credit Hours:	20
	QS-302	Quranic Studies		1(1-0)		1
Seme	ester – V					
Sr. #	Course Code	Course Title	Pre- Requisite	Cr. Division	Category	Credit Hours
23.	CS-501	Computer Networks	•	4(3-1)	Comp. Core	4
24.	DS-503	Theory of Automata & Formal Languages		3(3-0)	DS Elective	3
25.	*505	Uni. Elective-III		3(3-0)	Uni. Elective	3
26.	CS-507	Information Security		3(3-0)	Comp. Core	3
27.	DS-509	Advance Statistics	STAT-412	3(3-0)	DS Core	3
28.	MATH- 511	Differential Equations		3(3-0)	Math & Sci. Foundation	3
	ı	I		Total	Credit Hours:	19
Seme	ester – VI					

#	Code		Requisite	Division		Hours
28.	CS-502	Artificial Intelligence		4(3-1)	CS Core	4
29.	DS-504	Big Data Analytics		3(2-1)	DS Core	3
30.	DS-506	Data Warehousing & Business Intelligence		3(2-1)	DS Core	3
31.	*508	Uni. Elective-IV		3(3-0)	Uni. Elective	3
32.	CS-510	Parallel & Distributed Computing	CS-404	3(2-1)	CS Core	3
		·		Total	Credit Hours:	16
	QS-302	Quranic Studies		1(1-0)		1
Seme	ster – VII	·			·	
33.	DS-601	Machine Learning		3(2-1)	DS Elective	3
34.	DS-603	Cloud Computing		3(3-0)	DS Elective	3
35.	DS-605	Data Visualization		3(2-1)	DS Core	3
36.	SSH-607	Professional Practices		3(3-0)	Gen Edu	3
37.	DS-609	Data Mining		3(2-1)	DS Core	3
		· · · · · ·		Total	Credit Hours:	15
Seme	ster – VIII					
39.	DS-602	Deep Learning		3(3-0)	DS Elective	3
40.	CS-604	Final Year Project		6(0-6)	Comp. Core	6
				Total	Credit Hours:	9
	QS-302	Quranic Studies		1(1-0)		1
	•	·	Total Cre	dit Hours o	f the Program	130

BS (Data Science)

Program Learning Outcomes (PLOs)

Computing programs prepare students to attain educational objectives by ensuring that students demonstrate achievement of the following outcomes (derived from Graduate Attributes define by Seoul Accord www.seoulaccord.org).

No.	Program Learning Outcomes (PLOs)	Computing Professional Graduate
1.	Academic Education	To prepare graduates as computing professionals.
2.	Knowledge for Solving Computing Problems	Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements.
3.	Problem Analysis	Identify, formulate, research literature, and solve complex computing problems reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines.
4.	Design/Development of Solutions	Design and evaluate solutions for complex computing problems, and design and evaluate systems, components, or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
5.	Modern Tool Usage	Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to complex computing activities, with an understanding of the limitations.
6.	Individual and Team Work	Function effectively as an individual and as a member or leader in diverse teams and in multi-disciplinary settings.
7.	Communication	Communicate effectively with the computing community and with society at large about complex computing activities by being able to comprehend and write

		effective reports, design documentation, make effective presentations, and give and understand clear instructions.
8.	Computing Professionalism and Society	Understand and assess societal, health, safety, legal, and cultural issues within local and global contexts, and the consequential responsibilities relevant to professional computing practice.
9.	Ethics	Understand and commit to professional ethics, responsibilities, and norms of professional computing practice.
10.	Life-long Learning	Recognize the need, and have the ability, to engage in independent learning for continual development as a computing professional

Computing Core Courses

CS-303	PROGRAMMING FUNDAMENTALS			ALS	4(3-1)
Learning Obj	ectives				
	arize students with t sizes upon problem g		1 0	0	levelopment
Learning Out	comes				
At the end of th to:	ne course the studen	ts will be able	Domain	BT Level*	PLO
	tand basic problem	n-solving steps	С	2	2
• Apply	pasic programing co	oncepts	С	3	2
• Design and implement algorithms to solve real world problems.		prithms to solve	С	3	4
* BT= Bloom's domain	s Taxonomy, C=Co	gnitive domain, P	=Psychomoto	or domain, A=	Affective
SDGS address	SDGS addressed in the course: 9 (Industry, Innovation, and Infrastructure)				

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system

Course Contents

Theory

Overview of computer programming; Principles of structured and modular programming; Overview of structured programming languages; Algorithms and problem solving; Program development, analyzing problem, designing algorithm/solution; Testing designed solution; Translating algorithms into programs; Fundamental programming constructs; Data types; Basics of input and output; Selection and decision (If, If-Else, Nested If-Else, switch statement and condition operator); Repetition (while and for loop, Do-While Loops); Break statement, continue statement; Control structures; Functions; Arrays; Pointers; Records; Files (Input-Output); Testing & debugging.

Practical

Practical exercises of building algorithms in different writing forms and converting them to programs in C language.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Sessional Exam Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book:

1. Deitel, P. and H. Deitel. 2013. C++ How to Program. 9th Ed. Prentice Hall, Upper Saddle River, NJ, USA.

- Hanly and Koffman. 2009. Problem Solving and Program Design in C, 6th edition. Addison-Wesley. Boston, MA, USA.
- 2. Kochan, S. G. 2014, Programming in C. 4th Ed. Pearson Education, Addison-Wesley, Boston, MA, USA.
- 3. Mustafa T., T. Mehmood, I. Saeed and A. R. Sattar. 2008. Object Oriented Programming using C++. IT-Series publications, Faisalabad, Pakistan.

CS-304	OBJEC	CT ORIENTED	PROGRAMM	IING	4(3-1)
Learning Object	ctives				
• The course a	ims to develop stu	idents' Object-Or	riented Program	nming skills.	
Learning Outco	omes				
At the end of the to:	e course the studen	ts will be able	Domain	BT Level*	PLO
• Understand paradigm.	principles of obje	ct-oriented	С	2	2
	objects & their rel oriented solution	ationships to	С	3	3
	ition for a given p ed principles	roblem using	С	3	4
• Examine an	object-oriented sc	lution.	С	4	3
* BT= Bloom's domain	Taxonomy, C=Co	gnitive domain, l	P=Psychomoto	r domain, A= A	ffective
SDGS addresse	d in the course:	9 (Industry, Inn	ovation, and Ir	nfrastructure)	
	: the course will b course activities of				tantial portior
Course Content	ts				
Theory					
introduction to constructors; des functions; funct relationships; c abstract classes	object oriented o object oriented p structors; access m ion overloading; omposition; aggre and interfaces; g te library; object ng.	rogramming con odifiers; const ver operator overlo egation; inherita eneric programm	cepts; classes; s non-const fun pading; identif nce; multiple ning concepts;	objects; data o ctions; static da ication of clas inheritance; p function & cla	encapsulation ta members & ses and their olymorphism ass templates

Practical exercises of building algorithms in different writing forms and converting them to programs in C++ language.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book:

1. Deitel, P. and H. Deitel. 2015. Java: How to Program 10th Ed. Prentice Hall, Upper Saddle River, NJ, USA.

Suggested Readings:

- 1. Horton, I. 2011. Beginning Java, 7th Ed. John Willey & Sons, Hoboken, NJ, USA.
- 2. Robert, L. and S. Simonson. 2010. Object Oriented Programming in C++. 4th Ed. McGraw-Hill Higher Education, New York, NY, USA.
- 3. Schildt, H. 2009. Java the Complete Reference, 7th Ed. Pearson and Education, London, UK.
- 4. Wu, C. T. 2010. An Introduction to Object-Oriented Programming with Java, 5th Ed. McGraw-Hill, Columbus, OH, USA.

CS-401	DATA STRUCTURES & ALGORITHMS			
Learning Object	ives			
• This course pr and algorithm	ovides an introduction to the theor design.	y, practice and	d methods of d	ata structures
Learning Outcor	nes			
At the end of the o to:	course the students will be able	Domain	BT Level*	PLO
1	ious data structures and their apply them in implementing tions.	С	2, 3	2
• Analyze simpl	e algorithms and determine their	С	4 5	3

• Analyze simple algorithms and determine their C 4, 5 3 complexities.

• Apply the knowledge of data structures to other application domains.		C	3	2
• Design new data structures and algorithms solve problems.	orithms to	С	6	4, 5
* BT= Bloom's Taxonomy, C=Cogniti domain	ve domain, P	=Psychomotor	domain, A= A	Affective
SDGS addressed in the course: 9 (Industry, Inno	ovation, and In	frastructure)	
Teaching Mode: the course will be tau of contents and course activities online		-	-	stantial portion
Course Contents				
Theory				
Abstract data types; complexity anal implementations); Recursion and analy Sorting algorithms (selection, insertion dequeuer, priority queues (linked and a types; sorted linked list; searching an un indexing; open addressing and chaining way tress; balanced trees; graphs; br shortest path; adjacency matrix and ad garbage collection. Practical	zing recursive , merge, quicl rray impleme nsorted array; g; trees and tre readth-first ar	e algorithms; d c, bubble, heap ntations of que binary search ee traversals; b nd depth-first	ivide and conq o, shell, radix, eues); linked li for sorted arra pinary search to traversal; top	uer algorithms bucket); queue st & its variou ys; hashing an rees; heaps; M ological order
Practical exercises of searching, sorting	g and merging	g algorithms. I	Develop unders	standing of lin
lists, queues and stacks. Students impledata structures.			-	-

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book:

1. Mark, A. W. 2014. Data Structures and Algorithm Analysis in C++. 3rd Ed. Pearson, Harlow, UK.

- 1. Adam, D. 2012. Data Structures and Algorithms in C++. 3rd Ed. Sydney, Australia.
- 2. Brijendra, K. J. 2010. Data structures and algorithms in C. Tata McGraw Hill Education, New Dehli, India.
- 3. Elliot, B. K. and A. T. Paul. 2016. Data Structures: Abstraction and Design using Java. 3rd Ed. John Wiley Sons, New York, NY, USA.

CS-302	DISCRETE STRUCTURES			3(3-0)	
Learning Objectives					
• This course p and algorithr	provides an introduction to the theor n design.	ry, practice an	nd methods of da	ata structures	
Learning Outco	omes				
At the end of the to:	course the students will be able	Domain	BT Level*	PLO	
Structures su	the key concepts of Discrete ch as Sets, Permutations, raphs, and Trees etc.	С	2	2	
but rigorous, problems, su	Il logic proofs and/or informal, logical reasoning to real ch as predicting the behavior of olving problems such as puzzles.	С	3	2	
problems suc	ete structures into other computing ch as formal specification, databases, artificial intelligence, aphy.	С	3	2	
their relevan	e various discrete structures and ce within the context of computer he areas of data structures and n particular.	С	4	3	
* BT= Bloom's domain	Taxonomy, C=Cognitive domain, P	=Psychomoto	or domain, $A = A$	Affective	

SDGS addressed in the course:	9 (Industry, Innovation, and Infrastructure)

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system

Course Contents

Theory

Mathematical reasoning; propositional and predicate logic; rules of inference; proof by induction; proof by contraposition; proof by contradiction; proof by implication; set theory; relations; equivalence relations and partitions; partial orderings; recurrence relations; functions; mappings; function composition; inverse functions; recursive functions; Number Theory; sequences; series; counting; inclusion and exclusion principle; pigeonhole principle; permutations and combinations; elements of graph theory; planar graphs; graph coloring; Euler graph; Hamiltonian path; rooted trees; traversals.

Teaching Methodology:

Lectures, Written Assignments, Report Writing

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Final Exam

Text Book:

1. Richard, J. B. 2018. Discrete Mathematics. 7th Ed. Prentice Hall, New York, NY, USA.

- 1. Kenneth H. R. and K. Krithivasan. 2013. Discrete Mathematics and its Applications. 7th Ed. McGraw-Hill, Singapore.
- 2. Ralph P. G. 1994. Discrete and Combinatorial Mathematics: An Applied Introduction. 5th Ed. Addison-Wesley, Boston, MA, USA.
- 3. Winifred. and J. P. Remblay. 1998 Logic and Discrete Mathematics: A Computer Science Perspective. Prentice Hall, Upper saddle River, NJ, USA.

CS-404	OPEARTING SYSTEMS	4(3-1)			
Learning Object	Learning Objectives				
• To help students gain a general understanding of the principles and concepts governing the functions of operating systems.					

• To extend students understating of layered approach that makes design, implementation and operation of the complex OS possible.

Learning Outcomes			
At the end of the course the students will be able to:	Domain	BT Level*	PLO
• Understand the characteristics of different structures of the Operating Systems and identify the core functions of the Operating Systems.	С	2	2
• Analyze and evaluate the algorithms of the core functions of the Operating Systems and explain the major performance issues with regard to the core functions.	С	4, 5	3
 Demonstrate the knowledge in applying system software and tools available in modern operating systems. * BT= Bloom's Taxonomy, C=Cognitive domain, 1 	C P=Psychomoto	3	5,7
domain	r rycholliou		
SDGS addressed in the course: 9 (Industry, Innovation, and Infrastructure)			
Teaching Mode: the course will be taught in hybrid of contents and course activities online through lea	-	-	bstantial portion
Course Contents			
Theory			
Operating systems basics; system calls; proce communication; multithreaded programming; mult scheduling algorithms; thread scheduling; mult critical section; synchronization hardware; synchro recovering from deadlocks; memory management segmentation & paging; virtual memory manage mapped files; file systems; file concept; directory a	tithreading mo iple-processor onization prob t; swapping; c ement; demand	dels; threading scheduling; s lems; deadlock ontiguous men l paging; thras	issues; process synchronization; s; detecting and nory allocation; shing; memory-

Practical:

Process control system calls: The demonstration of fork, exec and wait system calls along with zombie and orphan states. Thread management using POSIX thread (pthread) library. Inter process communication in Linux. Implementing a CPU scheduling policy.

free space management; disk structure and scheduling; swap space management; system

protection; virtual machines; operating system security.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book:

 Abraham, S. and G. Gagne. 2018. Operating System Concepts. 9th Ed. John Wiley & Sons. Hoboken, NJ, USA.

- 1. Mehmood, T. and I. Saeed. 2005. A Comprehensive study of Operating systems & Networks, IT Series, Publication, Pakistan.
- 2. Raggo, M. T. and C. Hosmer. 2013. Data Hiding Exposing Concealed Data in Multimedia, Operating Systems, Mobile Devices and Network Protocols. Syngress, Waltham, MA, USA.
- 3. Ulrich, W. 2012. Quantum Dissipative Systems. 4th Ed. World Scientific Publisher, Singapore.
- 4. Wang, K. C. 2017. Embedded and Real-Time Operating Systems. Springer, Olympia, WA, USA.

CS-406	DATABASE SY	4(3-1)		
Learning Obje	ctives			
	udents learn the salient features of v nt, data warehousing and data minin		of databases, tra	ansaction
Learning Outco	omes			
At the end of the to:	e course the students will be able	Domain	BT Level*	PLO
• Explain fun	damental database concepts.	С	2	2
• Design conceptual, logical and physical database schemas using different data models.		С	5	4
•	ctional dependencies and resolve omalies by normalizing database	С	2	3

Use Structured Query Language (SQL) for	С	4	5
database definition and manipulation in any			
DBMS			

* BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain

SDGS addressed in the course:	9 (Industry, Innovation, and Infrastructure)
-------------------------------	--

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system

Course Contents

Theory

Basic database concepts; Database approach vs file based system; database architecture; three level schema architecture; data independence; relational data model; attributes; schemas; tuples; domains; relation instances; keys of relations; integrity constraints; relational algebra; selection; projection; Cartesian product; types of joins; normalization; functional dependencies; normal forms; entity relationship model; entity sets; attributes; relationship; entity-relationship diagrams; Structured Query Language (SQL); Joins and sub-queries in SQL; Grouping and aggregation in SQL; concurrency control; database backup and recovery; indexes, NoSQL systems.

Practical

Practical work on SQL server and Oracle server with practice of all major SQL statements.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book:

1. Elmasri, R. and S. Navathe. 2017. Fundamentals of Database Systems, 7th Ed. Addison-Wesley, Boston, MA, USA.

- 1. Connolly, R. and P. Begg. 2015. Database Systems: A Practical Approach to Design, Implementation and Management. 6th Ed. Addison-Wesley, Boston, MA, USA.
- 2. Mustafa, T. and A. R. Sattar. 2010. Database Management System, IT Series Publications, Pakistan.

- 3. Ramakrishnan, R. and J. Gehrke. 2003. Database Management Systems, 3rd Ed. Pearson Education, Boston, MA, USA.
- 4. Silberschatz, A., H. F. Korth and S. Sudarshan. 2010. Database System Concepts. 6th Ed. McGraw Hill, New York, NY, USA.

CS-402	SOFTWARE ENGINEERING			3(3-0)	
Learning Objec	ctives				
developmentTo emphase	ise students with v nt life cycles. ize upon understan nagement, softwar	ding of concepts	of project ma	anagement, char	ge control,
Learning Outco	omes				
At the end of the to:	e course the studen	ts will be able	Domain	BT Level*	PLO
• Describe van processes an	rious software engi d activities	ineering	С	1	2
	stem modeling tec lium size software		С	3	2
	are quality assuran medium size softv		С	4	2
• Discuss key principles and common methods for software project management such as scheduling, size estimation, cost estimation and risk analysis		С	2	3	
* BT= Bloom's	Taxonomy, C=Cog	gnitive domain, F	=Psychomote	or domain, A= A	Affective
domain					
SDGS addresse	d in the course:	9 (Industry, Inn	ovation, and l	Infrastructure)	
Teaching Mode	the course will be	e taught in hybrid	learning mod	le offering a sub	stantial porti
of contents and o	course activities or	line through lear	ning manager	ment system	

Course Contents

Theory

Nature of Software; Overview of Software Engineering; Professional software development; Software engineering practice; Software process structure; Software process models; Agile software Development; Agile process models; Agile development techniques; Requirements engineering process; Functional and non-functional requirements; Context models; Interaction models; Structural models; behavioral models; model driven engineering; Architectural design; Design and implementation; UML diagrams; Design patterns; Software testing and quality assurance; Software evolution; Project management and project planning; configuration management; Software Process improvement.

Teaching Methodology:

Lectures, Written Assignments, Project, Report Writing

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book:

1. Ian, S. 2016. Software Engineering. 10th Ed. Addison Wesley, Boston, MA, USA

- 1. Craig, L. 2001. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the Unified Process. 2nd Ed. Prentice Hall, Upper Saddle River, NJ, USA.
- 2. Dines, B. 2011. Software Engineering Domains Requirements, and Software Design, Springer, Berlin, Germany.
- Gary, B. S., T. J, Cashman and H. J. Rosenblatt. 2017. Systems Analysis and Design. 9th Ed. Cengage Learning, Boston, MA, USA.
- 4. Roger, S.P. 2016. Software Engineering: A Practitioner's Approach. 8th Ed. McGraw-Hill. Beijing, China.

CS-501	COMPUTER NETWORKS			4(3-1)
Learning Object	tives			
protocol sta	ize students with concepts related t andards. izes upon understanding of modern	5		odels, and
Learning Outco	omes		•	
At the end of the	At the end of the course the students will be able Domain BT Level*			PLO
to:				
	the key terminologies and gies of computer networks	С	2	2
-	the services and functions by each layer in the Internet stack.	С	2	2

• Identify various internetworking devices and protocols, and their functions in a network.	С	4	3
• Analyze working and performance of key technologies, algorithms and protocols.	С	4	3
Build Computer Network on various Topologies	Р	3	4
* BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective			

domain

SDGS addressed in the course: 9 (Industry, Innovation, and Infrastructure)

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system

Course Contents

Theory

Introduction and protocols architecture; basic concepts of networking; network topologies; layered architecture; physical layer functionality; data link layer functionality; multiple access techniques; circuit switching and packet switching; LAN technologies; wireless networks; MAC addressing; networking devices; network layer protocols; IPv4 and IPv6; IP addressing; sub netting; CIDR; routing protocols; transport layer protocols, ports and sockets; connection establishment; flow and congestion control; application layer protocols; latest trends in computer networks.

Practical

Basics of Networking: Familiarization of Internetworking, Network Cables, Colour coding, Crimping. Internetworking Operating Systems Configurations;

IP Routing: Implementing static routing, implementing dynamic routing using RIP, implementing dynamic routing using OSPF, implementing dynamic routing using EIGRP;

Switching Services - Virtual LANS: Layer 2 Switching configuration, VLAN configuration, VTP Configuration, VTP pruning, Implement inter-VLAN routing;

Security: Access Control List, Standard Access Lists, Extended Access Lists;

Managing Internetwork: Backup and restoring IOS, Familiarization of network simulators.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book:

1. Behrouz A. F. 2013, Data Communications and Networking, 5th Ed. McGraw-Hill, New York, NY, USA.

- 1. James F.K. and K. W. Ross. 2017. Computer Networking a Top-Down Approach Featuring the Internet. 7th Ed. Pearson Education, Harlow, UK.
- 2. Stallings, W. 2004. Data and Computer Communications. 6th Ed. McGraw Hill, New York, NY, USA.
- 3. Terry S., B. Burton and W. Burton. 2000. Advanced IP Routing in Cisco Networks. Prentice Hall, Upper Saddle River, NJ, USA.
- 4. William Stallings. 2014. Data and Computer Communications. 6th Ed. Pearson Education, Harlow, UK.

CS-507	INFORMATION SECURITY			3(3-0)
Learning Obje	ctives			
	e students understanding about the e for implementing security	ssentials of in	nformation secu	urity and the
Learning Outco	omes			
At the end of the to:	e course the students will be able	Domain	BT Level*	PLO
	concepts of information security gn principles, cryptography, risk t, and ethics.	С	2	2
• Discuss lega in informatio	I, ethical, and professional issues on security.	А	2	2
	us security and risk management ieving information security and	С	3	2
	propriate techniques to tackle and ms in the discipline of information	С	4	3
* BT= Bloom's domain	Taxonomy, C=Cognitive domain, P	=Psychomoto	or domain, A= .	Affective

SDGS addressed in the course:	9 (Industry, Innovation, and Infrastructure)
	16 (Peace, Justice and Strong Institutions)

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system

Course Contents

Theory

Information security foundations; security design principles; security mechanisms; symmetric and asymmetric cryptography; encryption; hash functions; digital signatures; key management; authentication and access control; software security; vulnerabilities and protections; malware; database security; network security, firewalls; intrusion detection; security policies; policy formation and enforcement; risk assessment; cybercrime, law and ethics in information security; privacy and anonymity of data.

Teaching Methodology:

Lectures, Written Assignments, Semester Project, Presentations

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book:

1. Bishop, M. 2015. Computer Security Art and Science. Wesley Professional, Addison, London, UK.

Suggested Readings:

- 1. Bidgoli, H. 2006. Handbook of Information Security. John Wiley, Hoboken, NJ, USA.
- 2. John, D. S. 2000. Principles of Global Security. Brookings Institution Press, WA. USA.
- Michael, E. W. and H. J. Mattord. 2014. Principles of Information Security 4th Ed. Cengage Learning, Boston, MA, USA.
- 4. Stalling, W. 2012. Cryptography and Network Security, 6th Ed, Pearson Education, UK.

Computer Science Core (Compulsory) Courses

CS-312	DIGITAL LOGIC DESIGN	4(3-1)
Learning Objec	tives	

• The course introduces students with digital circuit of large complexity and how such circuits could be built in a methodological way, starting from Boolean logic and applying a set of rigorous techniques.

Learning Outcomes			
At the end of the course the students will be able to:	Domain	BT Level*	PLO
• Acquire knowledge related to the concepts, tools and techniques for the design of digital electronic circuits.	С	1	2
• Demonstrate the skills to design and analyze both combinational and sequential circuits using a variety of techniques.	С	1, 2	2, 4
• Apply the acquired knowledge to simulate and implement small-scale digital circuits.	Р	3	5
• Understand the relationship between abstract logic characterizations and practical electrical implementations.	С	2	2
* BT= Bloom's Taxonomy, C=Cognitive domain, P domain	=Psychomoto	or domain, A=	Affective
SDGS addressed in the course: 9 (Industry, Innovation, and Infrastructure)			

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system

Course Contents	

Theory

Number Systems; Logic Gates; Boolean Algebra; Combination logic circuits and designs; Simplification Methods (K-Map, Quinn Mc-Cluskey method); Flip Flops and Latches; Asynchronous and Synchronous circuits; Counters; Shift Registers; Counters; Triggered devices & its types; Binary Arithmetic and Arithmetic Circuits; Memory Elements; State Machines; Introduction to HDL based Digital Design Methodology, Introduction Programmable Logic Devices (CPLD, FPGA); Lab Assignments using tools such as Verilog HDL/VHDL; MultiSim.

Practical

Hardware labs: verify the behaviour of Logic Gates using Truth Table and Familiarization with Digital Integrated Circuits, Implementation of Boolean Function using Logic Gates and Introduction to Hierarchical Design of Digital Logic Circuits, Familiarization with the Different Portions of the Datasheet for a Digital IC and Using the Datasheet to Gather Relevant Information to Utilize the IC as a Component in another Digital Logic Circuit, Implementation of 8 bit Binary Comparator using 4 bit Binary Comparators, Implementation of 4bit into 3bit Binary Multiplier using 4bit Binary Adders, Implementation of BCD Adder using 4bit Binary Adders, 4 to 7 Segment Decoder and 2Digit 7 Segment Display, Implementing a Full Adder using (a) Decoder (b) Multiplexer, Flip Flops, construct various types of counters;

Hardware description language (Verilog) labs: Introduction to Basic Syntax of Verilog and Gate level Modelling through implementation of half adder at gate level and its simulation using Xilinx ISE tools, Introduction to the concepts of Instantiation and Hierarchical Design in Verilog through the implementation of full adder using the previously designed half adder modules, Introduction to the Concept of Vectors and Introduction to Dataflow modelling through implementation of half adder at dataflow level, Consolidation of the concepts of Dataflow level modelling and Introduction to the concept of Synthesis by the CAD tool, Introduction to Behavioural modelling through implementation of half adder at behavioural level, Introduction to if else statement and case statement in Behavioural modelling through implementation of Multiplexer, Introduction to the Concepts of Sequential Circuit and a TestBench module (Stimulus Block), Behavioural Level Coding of Basic Sequential Circuits and Consolidation of the concepts of TestBench module (Stimulus Block), Introduction to Field Programmable Gate Array(FPGA) and Steps involved in its Programming.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations.

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book:

1. Thomas L. F. 2015. Digital Fundamentals, 11th Ed. Pearson Education, Boston, NJ, USA.

- 1. Nikrouz, F. 2015. Digital Logic Design and Computer Organization with Computer Architecture for Security. 1st Ed. McGraw-Hill Education, New York, NY, USA.
- Stephen, B. and Z. Vranesic. 2014 Fundamental of Digital Logic with Verilog Design, 3rd Ed. McGraw-Hill, New York, NY, USA.

 Vaibbhav, T. 2016. Digital Logic Design using Verilog: Coding and RTL Synthesis. 2nd Ed. Springer, New Dehli, India.

CS-403	COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE				4(3-1)		
Learning Object	Learning Objectives						
	covers the basics of a computer syste gramming.						
Learning Outco	omes						
At the end of the to:	course the studen	ts will be able	Domain	BT Level*	PLO		
• Acquire the	basic knowledge o , computer archite guage.	-	С	1	2		
• Understand	the concepts of ba , architecture, and	-	С	1, 2	2		
Solve the proorganization	blems related to c and assembly lang	guage.	Р	3	3		
* BT= Bloom's ' domain	Taxonomy, C=Co	gnitive domain, 1	P=Psychomoto	or domain, A= A	Affective		
SDGS addresse	d in the course:	9 (Industry, Inr	novation, and I	Infrastructure)			
-	the course will b course activities or	• •	-	-	ostantial portion		
Course Content	.S						
Theory							
other programs processors read a a hierarchy; the systems using r integer represen programs: a hist arithmetic and lo data structures; p	computer systems into different for and interpret instru- operating system networks; Represe tations; integer a torical perspective gical operations; c putting it together: f-bounds memory	ms; it pays to un actions stored in a manages the lenting and man arithmetic; float e; program enco control; procedure understanding p	understand ho memory; cach hardware; syst ipulating info ing point; Ma dings; data fo es; array alloca pointers; life in	w compilation es matter; storag tems communic ormation: inform achine-level rep ormats; accessin ation and access the real world:	systems work; ge devices form cate with other nation storage; presentation of ing information; heterogeneous using the GDB		

bits; machine-level representations of floating-point programs; Processor architecture: the Y86 instruction set architecture; logic design and the Hardware Control Language (HCL); sequential Y86 implementations; general principles of pipelining; pipelined Y86 implementations.

Practical

To learn the basics of the MIPS Assembly Language and Practice its programming.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book:

- David, A. P. and J. L. Hennessy. 2018. Computer Organization and Design the hardware/software interface. MA Morgan Kaufman Publishers, Cambridge, MA, USA.
 Suggested Readings:
- 1. Erl, T. 2008. Soa: principles of service design. Prentice Hall, Upper Saddle River, NJ, USA.
- 2. Godse, A. P. and D. A. Godse. 2013. Computer Architecture Organiztion, Technical Publication, Pune, India.
- 3. Hamacher, V. C., Vranesic, Z. G., Zaky, S. G., Vransic, Z., and Zakay, S. 1996. Computer organization. McGraw-Hill, New York City, NY, USA.
- 4. Stallings, W. 2018. Computer Organization and architecture designing for performance. Pearson Education, Hoboken, UK.

CS-502	ARTIFICIAL INT	ELLIGENCI	E	4(3-1)
Learning Object	tives			
• To cover	rse will introduce the basic principl simple representation schemes, pro og programming language will also	oblem solving	paradigms.	
Learning Outco	omes			
At the end of the to:	course the students will be able	Domain	BT Level*	PLO
Understa	nd different types of AI agents.	С	2	2
• Know ho based sys	w to build simple knowledge- stems.	С	3	2

• Apply knowledge representation,	С	4	4
reasoning, and machine learning			
techniques to real-world problems.			
* BT= Bloom's Taxonomy, C=Cognitive domain, I	P=Psychomotor	r domain, A=	Affective
domain			

 SDGS addressed in the course:
 8 (Decent work and Economic Growth)

 9 (Industry, Innovation, and Infrastructure)

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system

Course Contents

Theory

Artificial Intelligence: Introduction; AI paradigms and hypothesis; Intelligent agents; Difference between cybernetic Intelligence and artificial Intelligence; Objectives; Scope of weak and strong AI; Problem solving; Solving Problems by searching; Informed search and exploration; Constraint satisfaction problems; Adversarial search; Knowledge and reasoning; Logical agents, First-order logic, Inference in first-order logic; Knowledge representation; Planning and acting in the real world; Uncertain knowledge and reasoning; Uncertainty; Probabilistic reasoning; Probabilistic reasoning over time; Making simple decisions; Making complex decisions; Learning, learning from observations; Knowledge in learning; Learning methods; Reinforcement learning; Communicating; Perceiving and acting; Probabilistic language processing; Perception and robotics; LISP/PROLOG; Expert systems (ES) and applications; Artificial general Intelligence; Issues in safe AI; Introduction to cognitive and conscious systems

Practical

Differences between propositional logic: first-order logic, fuzzy logic and default logic; Focus on artificial neural network and machine learning; Study of the Turing machine and a discussion of the questionable claims.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Sessional Exam Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book:

1. Bratko, I. 2001. Prolog Programming for Artificial Intelligence. 4th Ed. Addison Wesley, Boston, MA, USA

- 1. George, F. 2008. Structures and Strategies for Complex Problem Solving 6th Ed. Pearson Education, London, UK.
- 2. Margulies, P. 2004. Artificial Intelligence. Blackbirch Press, Farmington Hills, MI, USA.

- 3. Noah, B. and T. Gale. 2011. Artificial Intelligence. Greenhaven Press, Farmington Hills, MI, USA
- 4. Stuart, J., N. Peter and F. Canny. Artificial Intelligence: A Modern Approach. 3rd Ed. Prentice Hall, Upper Saddle River, NJ, USA

CS-408	DESIGN & ANALYSIS C	OF ALGORI	THMS	3(3-0)
Learning Object	ctives			
underlying d	ntroduces students with the basic not ata structures. Students will learn ab mplexity, and efficiency of algorithn	out several m		
Learning Outco	omes			
At the end of the to:	e course the students will be able	Domain	BT Level*	PLO
-	t is meant by "best", "expected", case behavior of an algorithm.	С	1	1, 2
•	characteristics of data and/or other r assumptions that lead to different	С	2	2, 3
	formally the time and space of simple algorithms.	С	2	2
• List and con	trast standard complexity classes	С	4	3
give asympto	Omega, Theta notation formally to otic upper bounds on time and exity of algorithms.	С	4	3
divide-and-	rategies (brute-force, greedy, conquer, and dynamic g) to solve an appropriate problem.	С	3	3
including sir	ms using graph algorithms, agle- source and all-pairs shortest least one minimum spanning tree	С	3	3

٠	Trace and/or implement a string-matching	С	3	3
	algorithm.			

* BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain

SDGS addressed in the course: 9 (Industry, Innovation, and Infrastructure)

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system

Course Contents

Theory

Introduction: role of algorithms in computing; Analysis on nature of input and size of input Asymptotic notations; Big-O, Big Ω , Big Θ ; little-o, little- ω ; Sorting Algorithm analysis; loop invariants; Recursion and recurrence relations; Algorithm Design Techniques: Brute Force Approach, Divide-and-conquer approach; Merge, Quick Sort; Greedy approach; Dynamic programming; Elements of Dynamic Programming; Search trees; Heaps; Hashing; Graph algorithms; shortest paths; sparse graphs; String matching; Introduction to complexity classes.

Teaching Methodology:

Lectures, Written Assignments, Semester Project.

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Project, Final Exam

Text Book:

 Cormen, T.H., C. E. Leiserson, E. L. Rivest, and C. Stein. 2009. Introduction to algorithms. 3rd edition, MIT press. Cambridge, USA

- 1. Alfred, V., S. Ravi and D. Ullman. 2006. Compilers Principles Techniques and Tools. 2nd Ed. Wesley Pub, Lancing, MI, USA.
- 2. Amet, H. 1990. The Design and Analysis of Spatial Data. Wesley Series in Computer Science. Boston, MA, USA
- 3. Dick, G., E. Henri and J. H. Jacobs. 2010. Modern Compiler Design, 2nd Ed. John Wiley, New York City, NY, USA.
- 4. Kumar, V., A. Grama, A. Gupta and G. Karypis. 1994. Introduction to Parallel Computing Design and Analysis of Algorithms. Redwood City, Benjamin.
- 5. Lee, R., S. S. Tseng and R. C. Chang. 2005. Introduction to The Design and Analysis of Algorithms. McGraw Hill Higher Education, London, UK.

CS-510	PARALLEL & DISTRIBUTED COMPUTING	3(2-1)
Learning Object	tives	

This course will address issues in the design of parallel and distributed systems focusing on architectural models, software system models, models of synchrony processes and threads and synchronization

Learning Outcomes

At the end of the course the students will be able to:	Domain	BT Level*	PLO
• Learn about parallel and distributed computers.	С	1	2
• Write portable programs for parallel or distributed architectures using Message-Passing Interface (MPI) library	С	2	2
 Analytical modelling and performance of parallel programs 	С	3	4

* BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain

```
SDGS addressed in the course: 9 (Industry, Innovation, and Infrastructure)
```

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system

Course Contents

Theory

Asynchronous/synchronous computation/communication; Concurrency control, fault tolerance; GPU architecture and programming, heterogeneity: Interconnection topologies; Load balancing; Memory consistency model; Memory hierarchies; Message passing interface (MPI); MIMD/SIMD; Multithreaded programming; Parallel algorithms & architectures, parallel I/O; Performance analysis and tuning; Programming models (data parallel, task parallel, processcentric, shared/distributed memory); Scalability and performance studies; Scheduling; Storage systems; Synchronisation.

Practical:

Comparison of parallel and distributed program performance on selected processor, develop a simple CUDA renderer, develop a simple parallel and distributed webserver.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Sessional Exam Home Assignments, Quizzes, Project, Presentations, Final Exam

Textbook

1. A. S. Tanenbaum and M. V. Steen. 2007. Distributed Systems: Principles and Paradigms, Prentice Hall, NJ, USA.

Suggested Readings:

- 1. David, A. P. and J. L. Hennessy. 2018. Computer Organization and Design the hardware/software interface. MA Morgan Kaufman Publishers, Cambridge, MA, USA.
- 2. Erl, T. 2008. Soa: principles of service design. Prentice Hall, Upper Saddle River, NJ, USA.
- 3. Godse, A. P. and D. A. Godse. 2013. Computer Architecture Organization, Technical Publication, Pune, India.
- 4. Hamacher, V. C., Vranesic, Z. G., Zaky, S. G., Vransic, Z. and Zakay, S. 1996. Computer organization. McGraw-Hill, New York City, NY, USA.

Data Science Core (Compulsory) Courses

DS-410	INTRODUCTION TO DATA SCIENCE	3(2-1)
Learning Objec	ives	
	students to the rapidly growing field and equip them with some l tools as well as its general mindset.	e of its basic
1 1	significance of exploratory data analysis in data science.	
• To identify c	ommon approaches used for Feature Generation as well as Feat	ture Selection.

• To discuss the Ethical and Privacy issues.

Learning Outcomes			
At the end of the course the students will be able	Domain	BT Level*	PLO
to:			
• Describe what Data Science is and the skill sets needed to be a data scientist.	С	2	2
• Apply EDA and the Data Science process in a case study.	С	3	3
Comprehend the fundamental constructs of Python programming language.	С	2	4
• Apply basic machine learning algorithms to solve real world problems of moderate complexity.	С	3	4
* BT= Bloom's Taxonomy, C=Cognitive domain, P= domain	Psychomoto	r domain, A= A	ffective
SDGS addressed in the course: 9 (Industry, Innov	ation, and Ir	nfrastructure)	
Teaching Mode: the course will be taught in hybrid l of contents and course activities online through learni	-	-	stantial porti
Course Contents			
Theory			
Introduction: What is Data Science? Big Data and landscape of perspectives; Skill sets needed; Statis Statistical modeling, probability distributions, fitting a	tical Inferen	ice: Populations	and sample

Statistical modeling, probability distributions, fitting a model; Introduction to Python; Exploratory Data Analysis and the Data Science Process; Basic Machine Learning Algorithms: Linear Regression, k-Nearest Neighbors (k-NN), k-means, Naive Bayes; Feature Generation and Feature Selection; Dimensionality Reduction: Singular Value Decomposition, Principal Component Analysis; Mining Social-Network Graphs: Social networks as graphs, Clustering of graphs, Direct discovery of communities in graphs, Partitioning of graphs, Neighbourhood properties in graphs; Data Visualization: Basic principles, ideas and tools for data visualization; Data Science and Ethical Issues: Discussions on privacy, security, ethics, Next-generation data scientists.

Practical

Programming language Python has been proposed for the practical work of this course; perform programing exercises to apply machine learning algorithms to solve real world problems.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations.

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book:

1. Igual, L. S. Segui. 2017. Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications. 1st edition, Springer. Cham. ISBN 978-3-319-50016-4.

- Grus, J. 2015. Data Science from Scratch, O'Relly Media, 1st Edition, 2015; ISBN 978-1-491-90142-7
- 2. Saltz, J. S., J. M. 2017. Stanton, An Introduction to Data Science, SAGE Publications.
- Subramanian, G. 2015. Python Data Science Cookbook. Packt Publishing, 1st Edition. ISBN 978-1-78439-640-4
- 4. Zaki. M. J., W. Meira. 2014. Data Mining and Analysis: Fundamental Concepts and Algorithms. 1st edition. Cambridge University Press. ISBN 978-0-521-76633-3

DS-509	ADVANCE STATISTICS	3(3-0)	
Learning Obje	ctives		
forecasting insights and	ze students with statistical methods used for analysis of dif he values, predicting the unknowns, relating the variables relating data differences with real world complexities. ze on extracting knowledge from data on the basis of hidde	for getting deeper	
be made exp	blicit by incorporating the statistical algorithms in it. Autuulents on statistical techniques with a purview of artificia	-	

At the end of the course the students will be able to:	Domain	BT Level*	PLO
• Describe what part of statistics is meant for data scientist and what the applications of statistics in data science are.	С	1	2
• Apply Statistical techniques in real life problems.	С	3	3
• Analyze, Correlate, forecast data by using different statistical techniques.	С	2	4
• Apply basic data science statistical techniques by using SPSS on real world datasets.	С	3	5
SDGS addressed in the course: 4 (Quality Educa Growth) Teaching Mode: the course will be taught in hybrid I of contents and course activities online through learn	learning mod	e offering a subs	
Course Contents			
Theory Introduction to Statistics; Use of Statistics in Data Techniques for Forecasting; Interpolation/Extrapolati Probability; Prior and Posterior Probability; Random RNG; Correlation analysis; Chi Square Dependency Multivariate Distributions; Error estimation; Conf Gradient Descent and Coordinate Descent; Likeliho and likelihood inference; Fitting algorithms for n Generalized linear model; exponential families; va	ion; Introduc number gen tests; Diver idence Inter od inference onlinear mo	tion to Probabilit eration (RNG); 7 rsity Index; Data vals; Linear tra ; Revision of lin dels and related	y; Condition Sechniques f Distribution Insformation ear regression di diagnostic

Teaching Methodology:

Lectures, Written Assignments, Project.

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Presentations, Final Exam

Text Book:

1. Miller, J.D. 2017. Statistics for Data Science: Leverage the power of statistics for Data Analysis, Classification, Regression, Machine Learning, and Neural Networks. Packt Publishing Ltd. Birmingham, UK.

- Hardin, J., R. Hoerl, N.J. Horton, D. Nolan, B. Baumer, O. Hall-Holt, P. Murrell. R. Peng, P. Roback. L. D. Temple, and M. D. Ward. 2015. Data science in statistics curricula: Preparing students to "think with data". The American Statistician, 69(4), pp. 343-353.
- 2. Mendenhall, W., R.J.Beaver and B.M. Beaver. 2012. Introduction to Probability and Statistics. Cengage Learning, Boston, MA, USA.
- 3. Ronald, W. and Y. Myer.2008. Probability & Statistics for Engineers & Scientists. 8th Ed. Prentice Hall, Upper Saddle River, NJ, USA.
- 4. Sandra, K. M. 2010. Statistics, McGraw-Hill, New York, NY, USA.
- 5. Serdobolskii, V. 2008. Multiparametric Statistics. Elsevier, Amsterdam, Netherlands.

DS-504	S-504 BIG DATA ANALYTICS				
Learning Object	tives				
This course prov	ides a platform for the dissemination	n of research,	current practic	es, and future	
trends in the eme	erging discipline of big data analyti	CS.			
Learning Outco	omes				
At the end of the	course the students will be able	Domain	BT Level*	PLO	
to:					
	nd the fundamental concepts of and its programming paradigm.	С	2	2	
-	MapReduce Programming, ork, and Ecosystem	С	3	2	
Apache S	Spark Programming	С	3	4	

* BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain

SDGS addressed in the course: 9 (Industry, Innovation, and Infrastructure)

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system

Course Contents

Theory

Introduction and Overview of Big Data Systems; Platforms for Big Data, Hadoop as a Platform, Hadoop Distributed File Systems (HDFS), MapReduce Framework, Resource Management in the cluster (YARN), Apache Scala Basic, Apache Scala Advances, Resilient Distributed Datasets (RDD), Apache Spark, Apache Spark SQL, Data analytics on Hadoop / Spark, Machine learning on Hadoop / Spark, Spark Streaming, Other Components of Hadoop Ecosystem.

Practical:

Download and install Hadoop, acquire dataset, import required libraries to MapReduce dataset, perform Hadoop streaming and multi-node clustering.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Sessional Exam Home Assignments, Quizzes, Project, Presentations, Final Exam

Textbook

1. Leskovec, J., A. Rajaraman and U. Jeff, 2011. Mining of Massive Datasets, 2nd Ed. Cambridge University Press, UK.

- Jimmy, L. and Chris, 2010. Data-Intensive Text Processing with Map Reduce, 3rd Ed. Morgan & Claypool, UK
- 2. Ramakrishnan, R. and J. Gehrke. 2003. Database Management Systems, 3rd Ed. Pearson Education, Boston, MA, USA.
- 3. Tom W. 2003. Hadoop: The Definitive Guide, 4th Ed. O Reilly Media, Sebastopol, CA, USA
- 4. Silberschatz, A., H.F. Korth and S. Sudarshan. 2010. Database System Concepts. 6th Ed. McGraw Hill, NY, USA.

DS-506	DATA	DATA WAREHOUSING & BUSINESS INTELLIGENCE			
Learning Objec	ctives				
of business iStudents will	vill enhance student ntelligence. l also learn about va planning, designing	arious technical a	spects of BI a	and understand th	
Learning Outco	omes				
At the end of the to:	e course the student	s will be able	Domain	BT Level*	PLO
Data Wa	trate an appreciation rehouses and Busin enhancing the d	ess Intelligence	С	3	2
Snowflak	trate an understant ntal concepts of the ke Schema; learn ho of a DW based on the	ne Star and the ow to design the	С	3	2
Systems	and the architecture and be able to spec ses and potential pro-	ify the	С	2	4
Use Anal	lytic SQL to aggreg rt, and model data.		С	2	4
* BT= Bloom's domain	Taxonomy, C=Cog	nitive domain, P=	=Psychomoto	r domain, A= Af	fective
SDGS addresse	ed in the course:	9 (Industry, Inno	vation, and Ir	nfrastructure)	
-	e: the course will be course activities on		-	-	tantial portic

Course Contents

Theory

Introduction to Data Warehouse and Business Intelligence; Necessities and essentials of Business Intelligence; DW Life Cycle and Basic Architecture; DW Architecture in SQL Server; Logical Model; Indexes; Physical Model; Optimizations; OLAP Operations, Queries and Query Optimization; Building the DW; Data visualization and reporting based on Data warehouse using SSAS and Tableau; Data visualization and reporting based on Cube; Reports and Dashboard management on PowerBI; Dashboard Enrichment; Business Intelligence Tools.

Practical:

Implement complete process of data warehousing: determine business objectives, collect information, identify core business processes, design conceptual and logic models, locate data sources, set tracking duration, and implement the plan using tools such as SSAS, Tableau, PowerBI, Oracle, Microsoft, Amazon Redshift, Teradata.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Sessional Exam Home Assignments, Quizzes, Project, Presentations, Final Exam

Textbook

1. Brian, L.2016. Delivering Business Intelligence with Microsoft SQL Server 2016. 4th Ed. McGraw- Hill Education, London, UK.

- 1. Jeremy, K.M. 2012. Business Intelligence in Plain Language: A Practical Guide to Data Mining and Business Analytics. Applied Data Labs Inc., USA.
- Müller, R. M. and H. J. Lenz. 2013. Business Intelligence. 2nd Ed. Springer, Berlin, Germany.
- 3. Robert, L. 2012. The Data Warehouse Mentor: Practical Data Warehouse and Business Intelligence Insights. 1st Ed. McGraw-Hill Companies, NY, USA.
- 4. Turban, E., R. Sharda and D. Delen. 2011. Decision Support and Business Intelligence Systems. 9th Ed. Pearson Education, India.

DS-605		DATA VISUALIZA	TION		3(2-1
Learning Object	tives				
Students will be	able				
	e data for visualiza	ation			
0	visualizations				
		eate visualizations			
Learning Outco	omes				
At the end of the	course the studen	ts will be able to:	Domain	BT Level*	PLO
	tion of performin	nportance, necessity, ng exploratory data	С	2	2
Introduce var	rious type of charts ives solution to she	-	С	2	2
	e competency of the rent problems and olution.		С	3	4
• Use of R, van develop hand		and technologies to loratory data	С	3	5
* BT= Bloom's '	Taxonomy, C=Cog	gnitive domain, P=Psy	chomotor do	main, A= Affec	tive
domain					
	1. (1	0 /T 1 / T /	11.0		
SDGS addresse	a in the course:	9 (Industry, Innovatio	on, and Infras	tructure)	
		e taught in hybrid lear lline through learning			tial portion
Course Content	S				
Theory					
Operations; Type summary, box p	es of Exploratory (plots, histogram, b	A Analysis and Visu Graphs, single and mu par plot and others; I bability Mass Function	lti-dimension Distributions,	al summaries, f their represent	ive number ation using

exponential, normal, lognormal, pareto; Probability density functions, kernel density estimation; Relationship between variables, scatter plots, correlation, covariance; Estimation and Hypothesis

distribution functions, percentile-based statistics, random numbers; Modelling distributions,

Testing; Clustering using K-means and Hierarchical; Time series and survival analysis; Implementing concepts with R (or similar language)

Practical:

Graphical representation to see and understand trends, relationship, outliers, and patterns in data; Use indicators, line, bar, pie, area, pivot, scatter charts using tools such as MATLAB, R, PowerBI, Tableau, Sisense, Domo, D3JS.

Teaching Methodology:

Lectures, Written Assignments, Practical Labs Semester Project, Presentations

Course Assessment:

Sessional Exam Home Assignments, Quizzes, Project, Presentations, Final Exam

Textbook

1. D. Peng Roger. Exploratory Data Analysis with R.

- 1. Gorunescu, F. 2011. Data Mining Concepts, Models and Techniques. Springer Science & Business Media, Berlin, Germany.
- 2. Han, J., J. Pei and M. Kamber. 2011. Data mining Concepts and Techniques. 3rd Ed. Elsevier, Amsterdam, Netherlands.
- 3. Miller, H. J. and J. Han. 2001. Geographic Data Mining and Knowledge Discovery. Taylor & Francis, London, UK.
- 4. Ponniah, P. 2004. Data Warehousing Fundamentals. John Wiley & Sons, Hoboken, NJ, USA.

DS-609	DATA MINING	3(2-1)
Learning Ob	jectives	
basics, tecTo introdu	l on the student's understanding and awareness of the conce hniques, and application. Ice the concepts of Data Pre-processing and Summary Statistice the concepts of Frequent Item Set Generation, Associati	stics.
• To introdu	ice the concepts of Classification, Prediction, and Clustering	g algorithms

At the end of the course the students will be able to:	Domain	BT Level*	PLO
• Describe what Data Science is and the skill sets needed to be a data scientist.	С	2	2
• Apply EDA and the Data Science process in a case study.	С	3	2
• Comprehend the fundamental constructs of Python programming language.	С	2	3
• Apply basic machine learning algorithms to solve real world problems of moderate complexity.	С	3	2
* BT= Bloom's Taxonomy, C=Cognitive domain, P=l domain	Psychomotor	domain, A= Aff	fective
SDGS addressed in the course: 8 (Decent Work and	nd Economic	Growth)	
9 (Industry, Innov	ation, and In	frastructure)	
Teaching Mode: the course will be taught in hybrid hof contents and course activities online through learning	-	-	tantial portion
Course Contents			
Theory			
Introduction to data mining and basic concepts; Pre-Pre Statistics; Association Rule mining using Apriori Algo Introduction to Classification Types; Supervised Class Classification, K-Nearest Neighbors, Support Vector I Classification (K Means, K Median, Hieratical and Di Organizing maps); outlier & anomaly detection; Web Trends and Research Frontiers; Implementing concept	orithm and Fi sification (De Machines etc visive Cluste and Social N	requent Pattern 7 ecision trees, Nat .); Unsupervised ring, Kohonan S etwork Mining;	Frees; ive Bae belf
Practical			

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations.

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book:

1. Igual, L. S. Segui. 2017. Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications. 1st edition, Springer. Cham. ISBN 978-3-319-50016-4.

Suggested Readings:

- Grus, J. 2015. Data Science from Scratch, O'Relly Media, 1st Edition, 2015; ISBN 978-1-491-90142-7
- 2. Saltz, J.S., J. M. 2017. Stanton, An Introduction to Data Science, SAGE Publications.
- Subramanian, G. 2015. Python Data Science Cookbook. Packt Publishing, 1st Edition. ISBN 978-1-78439-640-4
- 4. Zaki. M. J., W. Meira. 2014. Data Mining and Analysis: Fundamental Concepts and Algorithms. 1st edition. Cambridge University Press. ISBN 978-0-521-76633-3

General Education Courses

CS-301	CS-301 INTRODUCTION TO INFORMATION & COMMUNICATION TECHNOLOGIES				
Learning Object	ive				
 application if Students with technologies They will all 	introduces students to information n the workplace. Il get basic understanding of co s. so learn how computers are used in ost productivity, and how the Inter-	omputer softwom the workplace	vare, hardware, e, how commun	and associated	
Learning Outco	mes				
At the end of the to:	course the students will be able	Domain	BT Level*	PLO	
• Understand	basics of computing technology	С	1	2	

• Perform number systems conversions and arithmetic		С	2	3
• Know about different types of software & hardware		С	2	2
• Apply basic computing related technologies		Р	3	4
* BT= Bloom's Taxonomy, C=Cog	nitive domain, l	P=Psychomotor	domain, A= A	Affective domain
SDGS addressed in the course	8 (Decent Wo	rk and Econom	ic Growth)	
9 (Industry, Innovation, and Infrastructure)				
Teaching Mode: the course will be of contents and course activities only	•	e	e	ubstantial portion

Course Contents

Theory

Brief history of Computer; Four Stages of History: Computer Elements; Processor: Memory: Hardware: Software; Application Software its uses and Limitations: System Software its Importance and its Types: Types of Computer (Super, Mainframe, Mini and Micro Computer); Introduction to CBIS (Computer Based Information System); Methods of Input and Processing; Class2. Organizing Computer Facility; Centralized Computing Facility: Distributed Computing Facility: Decentralized Computing Facility: Input Devices; Keyboard and its Types: Terminal (Dump, Smart, Intelligent): Dedicated Data Entry: SDA (Source Data Automation): Pointing Devices: Voice Input: Output Devices: Soft- Hard Copies: Monitors and its Types: Printers and its Types: Plotters: Computer Virus and its Forms; Storage Units; Primary and Secondary Memories: RAM and its Types; Cache: Hard Disks: Working of Hard Disk: Diskettes: RAID: Optical Disk Storages (DVD, CD ROM): Magnetic Types: Backup System; Data Communications; Data Communication Model: Data Transmission; Digital and Analog Transmission: Modems; Asynchronous and Synchronous Transmission: Simplex: Half Duplex: Full Duplex Transmission: Communications; Medias (Cables, Wireless): Protocols; Network Topologies (Star, Bus, Ring); LAN: LAN: Internet; A Brief History: Birthplace of ARPA Net: Web Link: Browser; Internet Services provider and Online Services Providers: Function and Features of Browser: Search Engines; Some Common Services available on Internet.

Practical

Practical work on Microsoft Office: creates documents in word, Stand-alone application for creating professional multimedia presentations using MS PowerPoint, creates simple to complex data/numerical spreadsheets using MS excel, database management applications using MS

Access, Introductory application for creating and publishing marketing materials using MS publisher, organise notes using MS OneNote; Basic web page designing using HTML.

Teaching Methodology

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment

Sessional Exam, Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book

 Baldauf, K. 2011. Succeeding with Technology: Computer System Concepts for your Life. 2nd Ed. Cengage Learning. Boston, MA, USA.

- 1. Capron, H. L. and J.A, Johnson 1990. Computers: Tools for an Information Age. 8th Ed. Benjamin/Cummings Publishing Company, San Francisco, CA, USA.
- 2. Long, L. E and Long, N. 2001. Computers: Information Technology in Perspective. 11th Ed. Pearson Education, Trenton, NJ, USA.
- 3. Meyer, M. and R. Baber. 1998. Computers in your Future. Cisco press, Trenton, NJ, USA.
- 4. Snyder, L. 2008. Fluency with Information Technology, John Wiley & Sons, New York, NY, USA.

SSH-307	PAKISTAN S	2(2-0)		
Learning Objecti	ve			L
ideologicalStudy the pr	sion of historical perspective, gebackground of Pakistan. occess of governance, national deve enges to Pakistan			
Learning Outco				
At the end of the to:	course the students will be able	Domain	BT Level*	PLO
• Learn abou Pakistan.	t the History and Ideology of	С	1	1
	edge about the political and ve structure of Pakistan.	С	2	1

٠	Get familiarity about the political transitions	С	2	1
	in Pakistan.			

* BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain

SDGS addressed in the course 4 (Quality Education)

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system.

Course Contents

Historical background of Pakistan; Muslim society in Indo-Pakistan: the movement led by the societies: the downfall of Islamic society: the establishment of British Raj- Causes and consequences: Political evolution of Muslims in the twentieth century; Sir Syed Ahmed Khan: Muslim League: Nehru: Allama Iqbal: Independence Movement; Lahore Resolution; Pakistan culture and society: Constitutional and Administrative issues: Pakistan and its geopolitical dimension; Pakistan and International Affairs; Pakistan and the challenges ahead.

Teaching Methodology

Lectures, Written Assignments

Course Assessment

Sessional Exam, Home Assignments, Quizzes, Final Exam

Textbook

1. Malik, H. 1968. The Emergence of Pakistan. By Chaudhri Muhammad Ali. New York: Columbia University Press, 1967. ix, 418 pp. Index. *The Journal of Asian Studies*, 27(4), 893-894.

- 1. Aziz, K. K. 2005. The making of Pakistan. Sang-e-Meel publ.
- 2. Basham, A. L. 1968. A Short History of Pakistan: Book One: Pre-Muslim Period.
- 3. Burke, S. M. and L. Ziring. 1993. Pakistan's Foreign Policy: An Historical Analysis. 2nd Ed. Oxford University Press, Oxford, U.K.
- 4. Mehmood, S. 1994. Pakistan Political Roots and Development. 2nd Ed. Five Star Publishing, Lahore, Pakistan.

ENG-309	ENGLISH COMPOSITION	& COMPRE	EHENSION	3(3-0)
Learning Object	tive			
• Demonstrate	n academic content: reading, writin e ability to think critically. mation and digital literacy skills.	g, listening ar	nd speaking.	
Learning Outco	mes			
At the end of the to:	course the students will be able	Domain	BT Level*	PLO
	th academic content: reading, ening and speaking.	С	1	1
Demonstrate	e ability to think critically	С	1	1
• Utilize infor	mation and digital literacy skills.	С	3	7
* BT= Bloom's T	Faxonomy, C=Cognitive domain, F	=Psychomoto	or domain, A= A	ffective domain
SDGS addressed	I in the course 4 (Quality Edu	cation)		
-	the course will be taught in hybrid ourse activities online through lear	-		ostantial portion
Theory				
give presentation	ssay Writing; Descriptive Essays; ns: Sentence Errors; Oral Preser : Short Story Writing: Review Wr	ntations: Con	nparison and C	ontrast Essays:
Teaching Metho				
Lectures, Written	Assignments, Semester Project, P	resentations		
Course Assessme	ent			
Sessional Exam,	Home Assignments, Quizzes, Proj	ect, Presentati	ons, Final Exam	
Text Book				
1. Langan, J. 20	13. College Writing Skills with Re	adings, McGr	aw-Hill, 5th Edi	tion
Suggested Readi	ngs			
 Rivers, W. M. Second or For Smalley, R. I. Heinle & Hei 	000. A Textbook of English Prose and M. S. Temperley. 1978. A Preign Language. Oxford University L., M. K. Ruetten and D. Kozyrev nle Inc., Boston, MA, USA. 993. Practical Business English. 2 A.	ractical Guide Press, Oxfor 2001. Refin	to the Teaching d, UK. ing Composition	n Skills. 4 th Ed

ENG-308	COMMUNIC	ATION & PH	RESENTATI	ON SKILLS	3(3-0)
Learning Obje	ective				
• Evaluate i	nformation and its so	ources critical	ly.		
	te selected information		•	se.	
• Use inform	nation effectively to	accomplish a	specific purpo	ose.	
Learning Outo	comes				
At the end of the able to:	e course the students	s will be	Domain	BT Level*	PLO
	thought and oulture	and marridae	С	1	1
us with the	thought and culture a he most important expression.	-	C	1	1
Enhance English language skills of the Students and develop their critical thinking.					
• Demonstra	ate ability to think cr	itically	С	3	7
* BT= Bloom's domain	s Taxonomy, C=Cog	nitive domain	, P=Psychomo	otor domain, A=	Affective
SDGS address	ed in the course	4 (Quality E	ducation)		
-	e: the course will be course activities onl		_	-	bstantial portion
Course Conter	nts				
Theory					
Principles of w	vriting good English	i; understandi	ng the compo	osition process:	writing clearly;
-	ce and paragraphs;			-	
punctuation; P	rocess of writing;	observing: au	dience collec	ting: composin	g: drafting and
revising: persua	asive writing: reading	g skills: listen	ing skills and	comprehension:	skills for taking
	skills for exams; Bus		· 1	0 0	U U
	ct: Letter formats;				
	immaries: proposals:				
verbal and non-	verbal communication	on: conducting	meetings; sm	all group commu	unication: taking

minutes: Presentation skills; presentation strategies: defining the objective: scope and audience

of the presentation: material gathering material organization strategies: time management; opening and concluding: use of audio-visual aids: delivery and presentation.

Teaching Methodology

Lectures, Written Assignments, Semester Project, Presentations

Course Assessment

Sessional Exam, Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book

1. Ellis, M., and C. Johnson. 1994. Teaching Business English. pp. 25-38. Oxford.

- 1. Henri, E. B., C. J. Jacobs, K. G. Langendoen and D. Grune. 2012. Modern Compiler Design. 2nd Ed, John Wiley & Sons. New York City, NY, USA.
- 2. Masami, I. 2004. Algebraic Theory of Automata and Languages. World Scientific, River Edge, NJ, USA.
- 3. Nielsen, J. 2008. Effective Communication Skills: The Foundations for Change. Xlibris Corporation.
- 4. Schriver, K. A. 1997. Dynamics in Document Design. 3rd Ed. Wiley Inc. New York City, NY, USA.
- 5. Smalley, R. L., M. K Ruetten and D. Kozyrev. 2001. Refining Composition Skills. 4th Ed. Heinle & Heinle Inc., Boston, MA, USA.

IS-310/SS-310	ISLAMIC STUDIES			2(2-0)		
Learning Objectiv	Learning Objective					
 To enhance understanding of the students regarding Islamic Civilization To improve Students skill to perform prayers and other worships To enhance the skill of the students for understanding of issues related to faith and religious life. 						
Learning Outco	mes					
At the end of the able to:	course the students will be	Domain	BT Level*	PLO		
• Get the known Islam.	owledge of basic teachings of	С	1	1		

٠	Learn how to adopt Islamic life style.	С	2	1
٠	Know the rights of individuals given by the Islam.	С	2	1

* BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain

SDGS addressed in the course 4 (Quality Education)

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system.

Course Contents

Theory

Basic Themes of Quran; Introduction to Sciences of Hadith; Introduction to Islamic Jurisprudence; Primary & Secondary Sources of Islamic Law; Makken & Madnian life of the Prophet; Islamic Economic System; Political theories: Social System of Islam.

Teaching Methodology

Lectures, Written Assignments

Course Assessment

Sessional Exam, Home Assignments, Quizzes, Final Exam

Text Book

- 1. Kamali, M. H. 1991. Principles of Islamic jurisprudence. pp. 283-296. Cambridge: Islamic Texts Society.
- 2. Waliullah, M. 2006. Muslim Jurisprudence and the Qur'anic Law of Crimes. Adam Pub.

ENG-407	TECHNICAL & BUSINESS ENGLISH WRITING	3(3-0)			
Learning Objective					
	ely plan and structure technical reports and to recognize the chnical report.	various stages in			

^{1.} Hamidullah, M. 1980. Introduction to Islam. Series. Popular Library Publishers Lahore

At the end of the course the students will be able to:		Domain	BT Level*	PLO
• Enhance the Skills regarding primary and library research to discover and employ information.		С	1	1
• Enhance correspondence Ski the generic conventions of each	· ·	С	1	1
• Polish the excellent writing sk spelling mistakes.	kills with no	С	3	7
* BT= Bloom's Taxonomy, C=Cog domain	nitive domain,	P=Psychomo	tor domain, A= A	Affective
SDGS addressed in the course	4 (Quality E	ducation)		
of contents and course activities onl		-	-	ostantial portio
Teaching Mode: the course will be of contents and course activities onl Course Contents Theory Overview of technical reporting; questionnaires: reviewing the gather exemplification: definition: classifi technical narration: description and and generation solution; brainstorm outlining conventions: electronic paragraphs: listening sentence strue pompous vocabulary: document de table of contents: footnotes: glossari glossaries: index: appendices: types mechanical elements and graphical brochures: handbooks: magazines a technical research reports: manuals	ine through le use of librar red informatio ication and di argumentatior ing: organizin communicati cture: clarity: ssign; document ies: cross refer setting system l elements: Re articles: resear	arning manage y and inform on; Technical of vision: casual a: persuasive s g material: co lon: generation length and o nt structure: p rencing: plagia s: creating the eports; Proposi- ch papers: fea	ement system. nation gathering: exposition; topica l analysis: effect trategy: Organizi nstruction of the on solutions: P rder: pomposity: preamble: summa arism: citation an- e professional re- sals: progress re- asibility reports:	administerin al arrangement ive expositior ing informatio formal outline olishing style empty words aries: abstracts d bibliography port; elements ports: Leaflets project reports

Lectures, Written Assignments, Presentations

Course Assessment

Sessional Exam, Home Assignments, Quizzes, Presentations, Final Exam

Text Book

1. Balzotti, J. 2021. Technical Communication: A Design-centric Approach. Routledge.

Suggested Readings

- 1. MacLemale, L. A. 2002. Technical and business communication for working professionals. (Book Reviews). Technical Communication, 49(2), 226-228.
- 2. Riordan, D. 2013. Technical report writing today. Cengage Learning.
- 3. Vengadasalam, S. S. 2021. Teaching Business, Technical and Academic Writing Online and Onsite: A Writing Pedagogy Sourcebook. Cambridge Scholars Publishing.

SSH-607	PROFESSIONAL PRACTICES	3(3-0)
SSH-007	PROFESSIONAL PRACTICES	3(3-0)

Learning Objective

- To develop student understanding of historical, social, economic, ethical, and professional issues related to the discipline of Computing.
- To identify key sources for information and opinion about professionalism and ethics.
- To enable students to analyze, evaluate, and assess ethical and professional computing case studies.

Learning Outcomes

At the end of the course the students will be able to:	Domain	BT Level*	PLO
• Know the scope of computing field after graduating in it and what are the common things in every organization	С	1	1
• Distinguish between various fields of computing	С	2	1
• Describe the core of any profession.	С	1	1
• Know that how business and professional environment of computing field work	А	2	1
• Adhere the responsibilities according to profession, organization, and himself/herself	А	3	9

			1	1	
• Know the standards, tools, and IPs and information security	rules about	C	1	9	
• Write and analyse software cor employer or to an employer	ntracts as an	С	3	7	
Know the business and professional A 2 9 environment of software house					
* BT= Bloom's Taxonomy, C=Cogr domain	nitive domain	, P=Psychomo	otor domain, A	= Affective	
SDGS addressed in the course	4 (Quality E	ducation)			
	10 (D	11.0		· .	
	12 (Respons	able Consump	tion and Produ	ction)	
Teaching Mode: the course will be t	taught in hybi	rid learning mo	ode offering a s	ubstantial portion	
of contents and course activities onli	ine through le	earning manag	ement system.	-	
Course Contents					
Theory					
Computing Profession; Computing E	Ethics; Philoso	ophy of Ethics	; The Structure	of Organizations;	
Finance and Accounting; Anatomy	of a Softw	are House; C	omputer Contr	racts: Intellectual	
Property Rights: The Framework	of Employee	Relations La	w and Chang	ing Management	
Practices; Human Resource Manager	ment and IT;	Health and Sat	fety at Work: S	oftware Liability:	
Liability and Practice: Computer M	Aisuse and the	ne Criminal L	aw: Regulation	n and Control of	
Personal Information; Overview of t	the British Co	omputer Socie	ty Code of Cor	nduct; IEEE Code	
of Ethics; ACM Code of Ethics and	d Professiona	l Conduct: AC	CM/IEEE Soft	ware Engineering	
Code of Ethics and Professional Pra	actice: Accou	intability and	Auditing; Soci	al Application of	
Ethics.					
Teaching Methodology					
Lectures, Written Assignments, Sem	nester Project	, Presentations			
Course Assessment					
Sessional Exam, Home Assignments	s, Quizzes, Pr	oject, Presenta	ations, Final Ex	kam	
Text Book					
1. Bott, F., Coleman, A., and Rowl CRC Press.	and, D. 2000	. Professional	issues in softw	are engineering.	
Suggested Readings					
1. Baase, S. 2008. A gift of fire: So	cial, legal, ar	nd ethical issue	es for computin	g and the	
Internet.					

- 2. Beabout, G. R., and Wennemann, D. J. 1993. Applied professional ethics: A developmental approach for use with case studies. University Press of America.
- 3. Bynum, T. W., and Rogerson, S. 2003. Computer ethics and professional responsibility: introductory text and readings. Blackwell Publishers, Inc.

Data Science Elective Courses

DS-503	THEORY OF AUTOMATA & FORMAL LANGUAGUES			3(3-0)
Learning Objec	tives			
• The cours	se introduces students with fundam	ental concept	s of automata th	ieory
computat	se introduces students with formal l ion which provide foundation of m s, software engineering, concurrent	any branches	of computer sci	
Learning Outco	omes			
At the end of the to:	course the students will be able	Domain	BT Level*	PLO
and auto	operties of languages, grammars omata with rigorously formal tical methods.	С	2	2, 3
context-f	utomata, regular expressions and ree grammars accepting or g a certain language.	С	3	4
	n between equivalent stic and non-deterministic finite and regular expressions.	С	3	4
	Taxonomy, C=Cognitive domain, P	P=Psychomoto	or domain, A= A	Affective
SDGS addresse	d in the course: 9 (Industry, Inno	ovation, and	Infrastructure)	
-	the course will be taught in hybrid course activities online through lear	-	-	stantial portion
Course Content	8			
Theory				
Introduction to A	utomata: The Methods and the Ma	dness, Introd	uction to Forma	l Proof,

Inductive Proofs, The Central Concepts of Automata Theory. Finite Automata: Introduction of Finite Automata, Deterministic Finite Automata, Nondeterministic Finite Automata, Finite Automata With Epsilon Transitions. Regular Expressions and Languages, Regular Expressions, Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws for Regular Expressions. Properties of Regular Languages, Proving Languages Not to Be Regular, Closure Properties of Regular Languages, Decision Properties of Regular Languages, Equivalence and Minimization of Automata. Context-Free Grammars and Languages: Context-Free Grammars, Parse Trees, Applications of Context-Free Grammars, Ambiguity in Grammars and Languages, Pushdown Automata: Definition of the Pushdown Automaton, The Languages of a PDA, Equivalence of PDAs and CFGs, Deterministic Pushdown Automata. Properties of Context-Free Languages: Normal Forms for Context-Free Grammars, The Pumping Lemma for Context-Free Languages, Closure Properties of Context-Free Languages, Decision Properties of CFLs. Introduction to Turing Machines: Problems That Computers Cannot Solve, The Turing Machine, Programming Techniques for Turing Machines, Extensions to the Basic Turing Machine, Restricted Turing Machines, Turing Machines and Computers. Un-decidability: A Language That Is Not Recursively Enumerable, Un-decidable Problem That Is RE, Un-decidable Problems About Turing Machines, Posts Correspondence Problem, Other Un-Decidable Problems. Intractable Problems: The Classes P and NP, An NP-Complete Problem, A Restricted Satisfiability Problem.

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Presentations, Final Exam

Text Book:

- 1. Alfred, V., S. Ravi and D. Ullman. 2006. Compilers Principles Techniques and Tools. 2nd Ed. Wesley Pub, Lancing, MI, USA.
- 2. Andrew, W. and A. Appel. 2004. Modern Compiler Implementation in C. Cambridge University Press, Cambridge, UK.
- 3. Dick, G., E. Henri and J. H. Jacobs. 2010. Modern Compiler Design. 2nd Ed. John Wiley, New York City, NY, USA.
- 4. Henri, E. B., C. J. Jacobs, K. G. Langendoen and D. Grune. 2012. Modern Compiler Design. 2nd Ed, John Wiley & Sons. New York City, NY, USA.
- 5. Kelley, D. 1995. Automata and Formal Languages: an introduction. Prentice-Hall, Inc.
- 6. Masami, I. 2004. Algebraic Theory of Automata and Languages. World Scientific, River Edge, NJ, USA.

^{1.} Linz, P. 2006. An Introduction to Formal Language and Automata. 4th Ed.

DS-601	MACHINE LEARNING			3(2-1)	
Learning Object	tives				
This course will	enable the students to:				
	asic machine learning co ge of machine learning a	-	ong with the	ir strangths an	d waaknassas
	ine learning algorithms t				
		o son o proon			
Learning Outco	omes				
At the end of the	e course the students will	l be able to:	Domain	BT Level*	PLO
Describe basic	machine learning conce	pts, theories	С	1	2
and applications					
Apply supervis	ed learning technique	es to solve	С	3	2
	oblems of moderate com		C	5	2
	vised learning techniqu		C	3	2
clustering proble	ems of moderate complex	xity			
Apply reinford	cement learning alg	orithms to	С	3	2
environments wi	th complex dynamics.				
Develop a reas	onable size project us	ing suitable	С	6	4
machine learning	1 0	ing suitable	C	Ũ	
* BT= Bloom's	s Taxonomy, C=Cognit	tive domain,	P=Psychor	notor domain,	A= Affective
domain					
	d in the course:		-	ation, and Infra	
0	: the course will be taugh	•	e	0	ostantial portion
	course activities online the	hrough learnii	ng manager	nent system	
Course Content	ts				
Theory	nochina loomina, comerci	t loomin a C		acific and ani-	of hunchhass
	nachine learning; concep	U	-		• •
-	Algorithm, Candidate eves, Artificial Neural Neural		-	-	-
•	g, Measuring Classifier A				• •
	archical Aglomerative	•	-	-	-
-	os (SOM) k-Nearest-nei	-		-	-
• • •	nd unlabelled data; Reir			-	-

Carlo inference Exploration vs. Exploitation Trade-off, Markov Decision Processes; Ensemble Learning: Using committees of multiple hypotheses. Bagging, boosting.

Practical:

Anaconda and Jupyter Installation, Practical exercises on Linear & logistic regression, LDA, resampling, SVM, unsupervised learning, time-series analysis and natural language processing using libraries such as: NumPy, TensorFlow, Pandas, SciPy, Keras, Neural Designer, Scikit-learn.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Sessional Exam Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book:

1. Alpaydin, E. 2016. Machine Learning: The New AI/Ethem Alpaydin. MIT Press, USA.

- 1. Bishop, C. 2006. Pattern Recognition and Machine Learning, Springer-Verlag, NY, USA.
- 2. Luger, G. F., P. Johnson, C. Stern, C. Newman and R. Yeo. 1994. Cognitive Science: The Science of Intelligent Systems. Academic Press, Boston, MA, USA.
- 3. Marsland, S. 2015. Machine learning: An Algorithmic Perspective, CRC Press, Boca Raton, London, UK.
- 4. Murty, M. N and V. S. Devi. 2015, Introduction to pattern recognition and machine learning, World Scientific. IISc Press, Singapore.

DS-602	DEEP LEAI	RNING		3(3-0)	
Learning Objectives					
This course will	enable the students to:				
and a focusedVisual perce	technology that has resulted in what is arguably responsible for the eternal spring of artificial				
Learning Outco	mes				

At the end of the course the students will be able to:	Domain	BT Level*	PLO	
• Apply deep learning algorithms to real-world problems	С	3	2	
• Analyze results from deep learning to select appropriate solutions	С	4	3	
• Code the novel neural network architectures from scratch and evaluating the performance on application specific standard benchmarks	С	5	4	
* BT= Bloom's Taxonomy, C=Cognitive domain, 1	P=Psychomoto	or domain, A=	Affective	
domain				
SDGS addressed in the course: 9 (Industry, In	novation, and	Infrastructure)		
portion of contents and course activities online thro Course Contents	ough learning r	nanagement sy	stem	
Theory				
Basics of deep learning, learning networks, Shallow vs. Deep learning etc.; Machine learning theory – training and test sets, evaluation, etc. Theory of Generalization; Multi-layer perceptrons, error back-propagation; Deep convolutional networks, Computational complexity of feed forward and deep convolutional neural networks; Unsupervised deep learning including auto-encoders; Deep belief networks; Restricted Boltzman Machines; Deep Recurrent Neural Networks (BPTT, LSTM, etc.); GPU programming for deep learning CuDNN; Generative adversarial networks (GANs); Sparse coding and auto-encoders; Data augmentation, elastic distortions, data normalization; Mitigating overfitting with dropout, batch normalization, dropconnect; Novel architectures, ResNet, GoogleNet, etc.				
Teaching Methodology:				
Lectures, Written Assignments, Presentations				
Course Assessment:				
Sessional Exam Home Assignments, Quizzes, Fina	l Exam			

Textbook:

 Goodfellow, I., Y. Bengio, A. Courville and Y. Bengio. 2016. Deep learning (Vol. 1, No. 2). Cambridge: MIT press

Suggested Readings:

- 1. Beysolow, T. 2017. Introduction to Deep Learning using R. CA Apress, CA, USA.
- 2. Chollet, F. 2017. Deep Learning with Python. Manning Publications, NY, USA.
- 3. Josh P. and A. Gibson. 2017. Deep Learning: A Practitioner's Approach. 1st Ed. O'Reilly Media, Inc, Sebastopol, CA, USA.
- 4. Julius, P. 2016. Deep Learning: Fundamentals, Methods and Applications. Nova Science Publishers, NY, USA.
- 5. Sugomori, Y., B. Kaluza, F. M. Soares and A. M. F. Souza. 2017. Deep Learning, Packt Publishing, Birmingham, UK.

DS-603

CLOUD COMPUTING

3(3-0)

Learning Objectives

This course will enable the students to:

- Understand the definition and essential characteristics of cloud computing, its history, the business case for cloud computing, and emerging technology use cases enabled by cloud.
- Learn about the various cloud service models (IaaS, PaaS, SaaS) and deployment models (Public, Private, Hybrid) and the key components of a cloud infrastructure (VMs, Networking, Storage File, Block, Object, CDN).
- Understand basics of cloud security, monitoring, and different job roles in the cloud industry.

Learning Outcomes			
At the end of the course the students will be able to:	Domain	BT Level*	PLO
• Define cloud computing and explain its essential characteristics, history, the business case for cloud, and emerging technologies enabled by cloud.	С	3	2
• Explain emerging Cloud related trends including Hybrid Multicloud, Microservices, Serverless, Cloud Native, DevOps and Application Modernization	С	4	3
• Describe the cloud service (IaaS, Saas, Paas) & deployment models (Public, Private,	С	5	4

Hybrid), and its infrastructure - VMs, Networking, Storage					
• Create a Cloud account and work hands with Cloud services, such as Object Sto	-	3	2		
* BT= Bloom's Taxonomy, C=Cognitive d	omain, P=Psychom	otor domain, A=	Affective		
domain					
SDGS addressed in the course: 9 (Industry, Innovation, and Infrastructure)					
Teaching Mode: the course will be taught	in hybrid learning 1	node offering a s	ubstantial		
portion of contents and course activities online through learning management system					
Course Contents					

Theory

Overview of cloud computing: Definition and Essential Characteristics of Cloud Computing; History and Evolution of Cloud Computing; Key Considerations for Cloud Computing; Key Cloud Service Providers and Their Services; Cloud Adoption - No longer a choice; Cloud Adoption - Some case studies; Internet of Things in the Cloud; Artificial Intelligence on the Cloud; Block chain and Analytics in the Cloud. Cloud Computing Models: IaaS - Infrastructure as a Service; PaaS - Platform as a Service; SaaS - Software as a Service; Public Cloud; Private Cloud; Hybrid Cloud. Components of Cloud Computing: Overview of Cloud Infrastructure; Virtualization and Virtual Machines Explained; Types of Virtual Machines; Bare Metal Servers; Secure Networking in Cloud; Containers; Basics of Storage on Cloud; File Storage; Block Storage; Object Storage Overview; Object Storage - Tiers and APIs; CDN - Content Delivery Networks. Emergent Trends and Practices: Hybrid Multi-cloud; Micro services; Server-less Computing; Cloud Native Applications; DevOps on the Cloud; Application Modernization. Cloud Security and Monitoring: What is Cloud Security; Identity and Access Management; Cloud Encryption; Cloud Monitoring Basics and Benefits; Case Studies in Different Industry Verticals; Career Opportunities and Job Roles in Cloud Computing.

Teaching Methodology:

Lectures, Written Assignments, Semester Project, Presentations

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Final Exam

Textbook:

1. Dowling, J. 2019. Introduction to Cloud Computing. Royal Institute of Technology. KTH.

- 1. Hurwitz, J., Kaufman, M., and Halper, F. Cloud Services for Dummies, IBM Limited Edition. John and Wiley Sons. Hoboken. New Jersey, USA.
- 2. Krutz, R. L., and Vines, R. D. 2010. Cloud security: A comprehensive guide to secure cloud computing. Wiley Publishing.
- Lee-Post, A., and Pakath, R. 2014. Cloud computing: a comprehensive introduction. In Security, Trust, and Regulatory Aspects of Cloud Computing in Business Environments. pp. 1-23. IGI Global.

MATH-306	CALCULUS & ANALYTICAL GEOMETRY			3(3-0)	
Learning Objec	tives				
• To provide	foundation and ba	asic ground for cal	culus and ana	lytical geometr	y background
Learning Outco	mes				
At the end of the	course the studen	ts will be able	Domain	BT Level*	PLO
to:					
Understand importance of calculus C 2				2	
• Apply derivatives, partial derivatives or integrals		С	3	2	
0	nd implement algo problems.	orithms to solve	С	3	4
* BT= Bloom's	Гахопоту, C=Co	gnitive domain, P	=Psychomoto	r domain, A= A	ffective
domain					
SDGS addresse	addressed in the course: 4 (Quality Education)				
		9 (Industry, Inno	vation, and Ir	nfrastructure)	
0		e taught in hybrid nline through learn	•	-	ostantial portion

Course Contents

Theory

Complex numbers; De Moivre's theorem and its applications; Simple cartesian curves; Functions and graphs; Symmetrical properties; Curve tracing; Limit and continuity; Differentiation of functions; Derivative as slope of tangent to a curve and as rate of change; Application to tangent and normal; Linearization; Maxima/Minima and point of inflexion; Taylor and maclurin expansions and their convergence; Integral as anti-derivative; Indefinite; Integration of simple functions; Methods of integration; Integration by substitution; Partial fractions; Definite integral as limit of a sum, application to area; Arc length; Volume and surface of revolution. Derivatives of Inverse Trigonometric Functions. Numerical Integration. Applications of Integrals. Transcendental Functions. Inverse Tragicomic Functions. Integrals.

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Sessional Exam Home Assignments, Quizzes, Presentations, Final Exam

Text Book:

1. Larson, R., R. P. Hostetler. B. H. Edwards and D. E. Heyd. 1986. Calculus with analytic geometry. Lexington, Massachusetts, USA: DC Heath.

- 1. Callahan, J. J. 2010. Advanced Calculus: A Geometric View. Springer Science & Business Media. Northampton, UK
- Dineen, S. and S. Dineen. 2001. Multivariate Calculus and Geometry. 2nd Ed. Springer, New York, YK, USA.
- Erwin, K. 2013. Advanced Engineering Mathematics. 10th Ed. Jones and Bartlett Learning, Burlington, MA, USA.
- 4. Schenck, H. 2003. Computational Algebraic Geometry. Cambridge University Press, Cambridge, UK

MATH-405	LINEAR ALGEBRA	3(3-0)
Learning Object	tives	
1	fundamentals of solution for system of linear equations. perations on system of equations, matrix properties, solutions and	d study of their
properties.	for a system of equations, matrix properties, solutions and	u study of them

At the end of the course the students will be ab	le Domain	BT Level*	PLO
to:		DILEVE	
• Understand the importance of linear algebra	C	2	2
• Apply algebraic operation will be requite to solve practical	red C	3	2
• Design and implement symbolic simula to solve system of equations through programming language.	tor C	3	4
* BT= Bloom's Taxonomy, C=Cognitive doma domain	in, P=Psychomoto	r domain, A= A	ffective
SDGS addressed in the course: 4 (Quality)	Education)		
9 (Industry, Innovation, and Infrastructure)			
Teaching Mode: the course will be taught in h of contents and course activities online through			ostantial portio
			ostantial portio
of contents and course activities online through			ostantial portio
of contents and course activities online through Course Contents	learning managen rminants; Cofacto r transformations;	nent system r and inverse; Operations on	Rank; Linea
of contents and course activities online through Course Contents Theory Vectors; Vector spaces; Matrices and dete independence; Positive definite matrix; Linea	learning managen rminants; Cofacto r transformations;	nent system r and inverse; Operations on	Rank; Linea
of contents and course activities online through Course Contents Theory Vectors; Vector spaces; Matrices and dete independence; Positive definite matrix; Linea products; Orthogonally and least squares; Eiger	learning managen rminants; Cofacto r transformations;	nent system r and inverse; Operations on	Rank; Linea
of contents and course activities online through Course Contents Theory Vectors; Vector spaces; Matrices and dete independence; Positive definite matrix; Linea products; Orthogonally and least squares; Eiger Teaching Methodology:	learning managen rminants; Cofacto r transformations;	nent system r and inverse; Operations on	Rank; Linea
of contents and course activities online through Course Contents Theory Vectors; Vector spaces; Matrices and dete independence; Positive definite matrix; Linea products; Orthogonally and least squares; Eiger Teaching Methodology: Lectures, Written Assignments, Presentations	learning managen rminants; Cofacto r transformations; n value & eigenvec	nent system r and inverse; Operations on	Rank; Linea
of contents and course activities online through Course Contents Theory Vectors; Vector spaces; Matrices and dete independence; Positive definite matrix; Linea products; Orthogonally and least squares; Eiger Teaching Methodology: Lectures, Written Assignments, Presentations Course Assessment:	learning managen rminants; Cofacto r transformations; n value & eigenvec	nent system r and inverse; Operations on	Rank; Linea

- 1. David, K. H. 2007. Elementary Linear Algebra with Applications. 9th Ed. Prentice Hall, Prentice Hall, Harlow, UK.
- Gilbert, S. S., B. C. Andy and B. Andrew, B. 2005. Linear Algebra and Its Applications. 4th Ed. Thomson Brooks/Cole, Belmont, CA, USA.
- 3. Hoffman, K. and R. A. Kunze. 2015. Pearson India Education Services, Noida, India.
- 4. Steven, J. L., I. Bica and T. Hohn. 2014. Linear Algebra with Applications. Pearson Learning Solution, New York, NY, USA.

STAT-412	PROBABILITY & STATISTICS				3(3-0)	
Learning Objecti	ives					
• To provide for	oundation and ba	sic ground for cal	culus and ana	lytical geometry	background	
Learning Outcon	nes					
At the end of the c to:	course the studen	ts will be able	Domain	BT Level*	PLO	
• Understar and statisti	d the importanc cs	e of probability	С	2	2	
• Apply pro	babilities related	to both discrete	С	3	2	
Compare descriptive	and analyze data e statistics.	sets using	С	3	3	
* BT= Bloom's Ta domain	axonomy, C=Co	gnitive domain, P=	=Psychomoto	r domain, A= Af	fective	
SDGS addressed	in the course:	4 (Quality Educa Growth)	tion) & 8 (De	ecent work & Ec	onomic	
Teaching Mode: of contents and co		e .	U U	e	stantial portion	

Course Contents

Theory

Introduction to statistics; Descriptive statistics; Statistics in decision making; Graphical representation of data stem-and lead plot, box-cox plots; Measures of central tendencies and dispersion, moments of frequency distribution; Counting techniques; Introduction to probability, sample space, events, laws of probability; Conditional probability and Baye's theorem with application to random variable (Discrete and continuous) binomial; Poisson; Geometric; Negative binomial distributions; Exponential gamma and normal distributions; Regression and correlation; Estimation and testing of hypotheses; Elementary statistical packages for explanatory data analysis.

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Sessional Exam Home Assignments, Quizzes, Presentations, Final Exam

Text Book:

1. Lay, L. D. 2015. Probability and Statistics for Engineering and the Sciences, 9th Ed. Cengage Learning, Boston, MA, USA.

- 1. Mendenhall, W., R. J. Beaver and B. M. Beaver. 2012. Introduction to Probability and Statistics. Cengage Learning, Boston, MA, USA.
- 2. Ronald, W. and Y. Myer. 2008. Probability & Statistics for Engineers & Scientists. 8th Ed. Prentice Hall, Upper Saddle River, NJ, USA.
- 3. Sandra, K. M. 2010. Statistics, McGraw-Hill, New York, NY, USA.
- 4. Serdobolskii, V. 2008. Multiparametric Statistics. Elsevier, Amsterdam, Netherlands.

MATH-511	DIFFERENTIAL I	3(3-0)		
Learning Objectiv	ve			
	develops students' fundamental ski ing differential equations for real-v	U	•	rential equations
Learning Outco	mes			
At the end of the to:	course the students will be able	Domain	BT Level*	PLO

• Identify, analyze and subsequently solve physical situations whose behavior can be described by ordinary differential equations.	С	2, 3	2, 3
• Determine solutions to first order separable differential equations	C	2	3
• Determine solutions to first order linear differential equations.	C	2	3
• Determine solutions to first order exact differential equations.	C	2	3
• Determine solutions to second order linear homogeneous and non-homogeneous differential equations with constant coefficients.	C	2	3

* BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain

SDGS addressed in the course 4 (Quality Education

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system.

Course Contents

Theory

Ordinary differential equations of the first order; Geometrical considerations; Isoclines; Separable equations; Equations reducible to separable form; Exact differential equations; Integrating factors; Linear first-order differential equations; Variation of parameters; Ordinary linear differential equations; Homogeneous linear equations of the second order; Homogeneous second order equations with constant coefficients; General solution; Real roots; Complex roots; Double root of the characteristic equation; Differential operators; Cauchy equation; Homogeneous linear equations of arbitrary order; Homogeneous linear equations; Non-homogeneous linear equations; Modeling of electrical circuits; Systems of differential equations; Series solutions of differential equations; Partial differential equations; Method of separation of variables; Laplace equations and their solutions by Fourier series method.

Teaching Methodology

Lectures, Written Assignments, Presentations

Course Assessment

Sessional Exam, Home Assignments, Quizzes, Final Exam

Text Book

1. Dennis, G. Z. and R. C. Michael. 1996. Differential Equations with Boundary Value Problems. Brooks/Cole Publishing, New York City, NY, USA.

Suggested Readings

- 1. Edwards, C. H. and E. David. 1993. Elementary Differential Equations with Applications. Penney, Prentice Hall, Upper Saddle River, NJ, USA.
- 2. Erwin, K. 1993, Advanced Engineering Mathematics. 7th Ed. John Wiley & Sons Inc, Hoboken, NJ, USA.
- 3. Michael, G. 1996. Advanced Engineering Mathematic, Prentice Hall Publishers, Upper Saddle River, NJ, USA.
- 4. Prindle, Z. and W. Schmidt. 1996. A First Course in Differential Equation. Brooks/Cole Publishing, New York City, NY, USA.

	U	niversity Elective	e Courses		
		ENTREPRENE	URSHIP		3(3-0)
Learning Objec	tives				
The course idea is markThis will be	provides an under gives students the ketable to investor accomplished the convey the unique	tools. Necessary s. s. cough a combination	to think creation	vely, to plan ou , cases studies	and projects
Learning Outco	omes				
At the end of the	course the studen	ts will be able	Domain	BT Level*	PLO
to:					
	and processes, and diverse organization		С	2	2
	nowledge of leader ated manner	rship concepts in	С	3	2
Analyze the internal/external factors C 3 3					3
* BT= Bloom's domain	Taxonomy, C=Co	gnitive domain, P	=Psychomotor	domain, A= A	ffective
SDGS addresse	d in the course:	8 (Decent Work	and Economic	c Growth)	
	9 (Industry, Innovation, and Infrastructure)				

TT.• • • ...

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system

Course Contents

Theory

Evolution and importance of entrepreneurship; Difference between intrapreneurship and entrepreneurship; Entrepreneurial process; Agribusiness ventures, practices and characteristics; Methods of new idea generation; Opportunities, innovations; change, fantasies, Environment of small businesses in agriculture; Sources and resolutions, corporate entrepreneurship in business sector; Risk failure and new venture unit; Feasibility and concepts of planning; Stages of growth model; Responsibility of feasibility plan; Product and services concepts; Product servicing concepts and commercial opportunities (macro over view); Products and technology; Identification of opportunities; Product development life cycle; Product protection; Trade mark and patents; Validity of property rights and accessing government information; Human resources side of enterprise; Infrastructure of services, Types of service venture; Success factors; Marketing and new venture development; Situation analysis for new ventures, Marketing concepts, startup of marketing research; Market focused on organization; Sources of market intelligence; Competitive analysis and implications of market research; Marketing strategies; Functions and product concepts; Changing international ventures; Entrepreneurial team and business formation, Human resource and relations, Board of directors, Legal aspects; Evaluation of acquisition opportunities and methods of valuation; Financial resources and asset management, Different types of financing, buy or lease, Organization cycle and growth of organization; Strategic management for success of enterprise; Looking towards agricultural entrepreneurial career, Agricultural business plan contents and details.

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Sessional Exam Home Assignments, Quizzes, Presentations, Final Exam

Text Book:

 Dollinger, M. 2007. Entrepreneurship: Strategies and Resources. 2nd Ed. Prentice Hall Inc. Upper Saddle River, NJ, USA.

Suggested Readings:

1. Kuratko, D. and R. Hodgetts. 2006. Entrepreneurship: A Contemporary Approach. 7th Ed. Prentice Hall, Inc., Upper Saddle River, NJ, USA.

- 2. Naqi, S. M. 2012. Entrepreneurs. 3rd Ed. A-One Publishers, Lahore, Pakistan.
- 3. Peters, M. and R. D. Hishrich. 2009. Entrepreneurship. 8th Ed. Irwin/McGraw-Hill, New York City, NY, USA.
- Wills, W. J. and M. E. Newman. 1998. Agribusiness Management and Entrepreneurship. 2nd Ed. Interstate Publishers, Boston, MA, USA.

PR	INCIPLES OF F	CONOMIC	8	3(3-0)
Learning Objectives				
This course will enable the student	s to:			
 Make students understand to issues in agriculture, indust Make students understand conductive industry and agriculture. Let the students have a comparison various aspects of the economic statement of the economic statement. 	ry and financial a current policies in prehensive know	nd social sector trade, comme	or. erce, fiscal/mor	netary policy,
Learning Outcomes	•			
At the end of the course the studen	ts will be able	Domain	BT Level*	PLO
to:				
• Understand processes, and resources within a diverse organization		С	2	2
• Apply knowledge of leadership concepts in an integrated manner		С	3	2
• Analyze the internal/extern affecting a business.	al factors	С	3	3
* BT= Bloom's Taxonomy, C=Cog	gnitive domain, P	=Psychomoto	r domain, A=	Affective
domain				
SDGS addressed in the course:	8 (Decent Work	and Economi	c Growth)	
	9 (Industry, Inno	vation, and Ir	nfrastructure)	
Teaching Mode: the course will b	e taught in hybrid	learning mod	le offering a su	bstantial portion
of contents and course activities or	line through learr	ning managem	nent system	
Course Contents				
Theory				
Introduction to Pakistan economy	; Concept of eco	nomic develo	pment and ec	conomic growth
What is the difference between	-		-	-
Determinants of economic deve				-
development; What are the ma	in measurement	of economic	c developmen	t and commo

characteristics of under-develop economics; Theories of development; What is the theory of vicious circle of poverty; What is demand side vicious circle of poverty and supply side vicious circle of poverty; Capital formation; Main sources of capital formation; Importance of capital formation, causes of low capital formation in Pakistan, suggestions how to improve it; Explain the small & large industry growth, how it is growing. Problems of small & large scale industry; Foreign Trade; Why it is important for economy; Export promotion measures and BOT & BOP. ; Foreign debt and foreign aid; Role, importance, types, problems, solutions; Transportation and communication; How transportation and communication plays an important role in development.

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Sessional Exam Home Assignments, Quizzes, Presentations, Final Exam

Text Book:

 Baye, M. R., J. Prince and J. Squalli. 2006. Managerial Economics and Business Strategy, 5th Ed. McGraw-Hill, NY, USA.

- 1. Donald. N. S. 2011, Managerial Economics: Concepts and Principles. 1st Ed. Business Expert Press, New York, NY, USA.
- 2. Ivan. P. 2016. Managerial Economics. 5th Ed. Abingdon, Oxon, Routledge, NY, USA.
- Keat, P., and P. K. Young. 2008. Managerial Economics. 6th Ed. Prentice Hall, Upper Saddle River, NJ, USA.
- 4. Thomas, C. and S. C. Maurice. 2010. Business Economics, 10th Ed. Mc Graw-Hill, India.

ORGANIZATIONAL BEHAVIOUR			3(3-0)
Learning Objectives			
 To familiarize students with the basic structured To emphasizes upon problem analysis, algorithm testing 	1 0 0		velopment and
Learning Outcomes			
At the end of the course the students will be able to:	Domain	BT Level*	PLO

• Provide a basic knowledge of main ideas	С	2	2
• Develop an understanding of these and of	C	3	2
related ideas and concepts			
• Develop skills in diagnosis and problem	C	4	4
solving			

* BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain

SDGS addressed in the course:	9 (Industry, Innovation, and Infrastructure)
	10 (Reduced Inequalities)

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system

Course Contents

Theory

Introduction to OB; People-centered organizations and ethical conduct; Organizational culture; Socialization; Mentoring; Key individual differences; Values, attitudes, job satisfaction and counterproductive work behaviours; Social perceptions and attributions; Foundations of motivation; Improving job performance with goals, feedback, rewards, and positive reinforcement; Group dynamics; Developing and leading effective teams; Individual and group decision making; Managing conflict and negotiating; Communicating in the digital age; Leadership, influence, empowerment, and politics; Organizational design.

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Sessional Exam Home Assignments, Quizzes, Presentations, Final Exam

Text Book:

1. Huczynski, A. and A. D. Buchanan 2010. Organizational Behavior. Financial Times Prentice Hall, Upper Saddle River, NJ, USA.

- 1. Johnson, C. E. 2011. Meeting the Ethical Challenges of Leadership: Casting Light or Shadow. 4th Ed. SAGE Publications, Thousand Oaks, CA, USA.
- 2. Kreitner, R. and A. Kinicki.2012. Organizational Behavior. 10th Ed. McGraw-Hill, New York, NY, USA.

- 3. Parikh, P. 2009. Value Investing and Behavioral Finance. Tata McGraw-Hill Education, India.
- Robbins, P. and T. A. Judge. 2012. Organizational Behavior. 15th Ed. Prentice Hall, Upper Saddle River, NJ, USA.

	IOT IN DIGITAL AC	GRICULTU	RE	3(2-1)
Learning Object	tives			
To enable studer	nts to understand:			
 Develop an u agricultural i To describe t communicate them. Develop and 	ital latest digital agriculture technologinderstanding about underlying processues and challenges related to precipie basics of IoT, the technology use e, how they store data, and the kind of apply the simple decision support spagriculture and crop production.	esses in digita ision manager ed to build sm of distributed	nent. art devices, hov systems neede	w they d to support
Learning Outco	omes			
At the end of the to:	course the students will be able	Domain	BT Level*	PLO
	basics understanding of core DATs focused on case study and pacts	С	2	2
	at IoT is and recognize the factors o the emergence of IoT	С	2	2
• Design and p	program IoT devices	С	3	2, 3
• Use real IoT protocols for communication		С	2	2
• Develop a simple DSS using IoT to gather agriculture generated data		Р	3	4
• Transfer IoT cloud provid	data to the cloud and in between ers	Р	3	4
• Define the Commerciali	infrastructure for supporting zation of Product	С	2	7

* BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain

SDGS addressed in the course:	2 (Zero Hunger)
	9 (Industry, Innovation, and Infrastructure)
	11 (Sustainable Cities and Communities)

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system

Course Contents

Theory

Introduction: Overview and basics concepts of ICT, IoT and DSS in agriculture, Understanding of innovative and latest digital technologies including sensors, unmanned aerial vehicle (UAVs) robotics, communication networks, artificial intelligence, machine learning and big data analysis tools for agriculture and sustainable crop production; Basics of IoT: What is IoT?, IoT standards and protocols, IoT platform and applications, IoT product development for agriculture, IoT security in the Internet; IoT Development Platform: Introduction to Raspberry Pi as the core development platform; IoT Programming for Multi Sensors: Introduction to Python programming for IoT development, Introduction to GrovePi+/PiHat Shields as the multi-sensor platforms; Introduction to the Standard Lightweight IoT Protocol (MQTT): Open source industry IoT communication protocol namely Message Queue Telemetry Transport (MQTT); Polishing IoT systems for product pitching.

Practical

Basic hands-on for Raspberry Pi Operating system; Hands-on for using input/output pins for controlling IoT related sensors and devices (e.g., LED, Buttons, etc.) to gather agriculturegenerated data; Hands on to setup and deploy multiple sensors for data collections (e.g., sensors: temperature, humidity, soil moisture, greenhouse gases, water, rainfall, light, current, vibration etc.); Hands on to enable sensor connectivity using machine-to-machine (M2M) communication; Hands on to extremely lightweight publish/subscribe messaging transport protocol on Raspberry Pi and PC/Laptop; Hands on to publish/subscribe data from multi-sensors; Hands on controlling/monitoring IoT sensors and systems using Mobile Application; Hands on to polishing the GUI for user-friendly interface; Commercialization pitching of the proposed IoT projects by students.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations.

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book:

 Singh, G. and K. Gurjit. 2021. Digital Technologies for Smart Agriculture; Artificial Intelligence and IoT-Based Technologies for Sustainable Farming and Smart Agriculture, edited by Pradeep Tomar and Gurjit Kaur, pp. 54-67. IGI Global

- 1. Hassan, Q. F. ed., 2018. Internet of things A to Z: Technologies and Applications. John Wiley & Sons, Hoboken, New Jersey
- 2. Singh, R., A. Gehlot, L.R. Gupta, B. Singh and M. Swain. 2019. Internet of Things with Raspberry Pi and Arduino. CRC Press.
- 3. Liyanage, M., A. Braeken, P. Kumar and M. Ylianttila. 2020. IoT Security: Advances in Authentication. John Wiley & Sons. UK
- 4. Serpanos, D. and M. Wolf. 2017. Internet-of-things (IoT) systems: architectures, algorithms, methodologies. Springer. Atlanta. USA

PRINCIPLES OF A	CCOUNTIN	G	3(3-0)
Learning Objectives			
• To introduce students with knowledge of account the process of financial management required to systems.			
Learning Outcomes			
At the end of the course the students will be able to:	Domain	BT Level*	PLO
• Develop and understand the nature and purpose of financial statements in relationship to decision making.	С	2	2
• Develop the ability to use the fundamental accounting equation to analyze the effect of business transactions on an organization's accounting records and financial statements.	С	3	2
• Develop the ability to use a basic accounting system to create (record, classify, and summarize) the data needed to solve a variety of business problems.	С	3	2
• Develop the ability to use accounting concepts, principles, and frameworks to	С	3	2

analyze and effectively communicate				
information to a variety of au				
• Develop the ability to use acc	counting	С	3	2
information to solve a variety	of business			
problems.				
• Develop the ability to interac	t well with team	А	3	6,9
members	t wen with team	11	5	0,)
* BT= Bloom's Taxonomy, C=Co	gnitive domain, P	=Psychomotor	domain, A= A	Affective
domain				
SDGS addressed in the course:	8 (Decent Work	and Economic	Growth)	
SDOS addressed in the course.			Glowilly	
	9 (Industry, Inno	vation, and Inf	rastructure)	
Teaching Mode: the course will b	• •	-	-	bstantial portio
of contents and course activities or	nline through learr	ning manageme	nt system	
Course Contents				
course contents				
Theory				
Introduction to accounting; Accou	nting principles. F	Rook keeping. F	Rasics of finar	ncial statement
Adjustments to financial stateme				
Statement of cash flows; Financia				
errors; Accounting for partnerships		try, i funt und e	quipinent (11	<i>L)</i> , <i>i</i> ieeountii
Teaching Methodology:	, 2			
reacting methodology.				
Lectures, Written Assignments, Pr	esentations			
<u> </u>				
Course Assessment:				
Sessional Exam Home Assignmen	ts. Ouizzes. Prese	ntations. Final 1	Exam	
	, Q			
Text Book:				
		1.1. 1.1.	1 D / L 1	
1. Ghani, M. A. 2006. Principles	of Accounting. Pa	k Imperial Boo	k Depot, Lah	ore, Pakistan
Suggested Readings:				
1. Meighs, R. F., M. A. Meighs,		e		nting: The Bas
of Business Decisions. 11th Ec	l. McGraw-Hill, N	lew York, NY,	USA.	
	0010 - 1		• 1 b <i>t</i>	· 10/1 E 1

2. Horne, V. J. and M. Wachowicz. 2013. Fundamentals of Financial Management. 13th Ed. Prentice Hall, Upper Saddle River, NJ, USA.

- 3. Kaluza, J. 2008. Accounting: A Systems Approach. 8th Edition, McGraw-Hills, New York. NY, USA.
- 4. Wild, J. J., K. D. Larson, B. Chiappetta. 2007. Fundamental Accounting Principles. McGraw-Hill, New York, NY, USA.

PRI	NCIPLES OF PS	YCHOLOG	Y	3(3-0)
Learning Objectives				
• To provides an overview of the	he history and maj	or issues of p	sychology	
• To emphasizes upon learning motivation and emotion, hum		-		behaviour,
Learning Outcomes				
At the end of the course the studen to:	ts will be able	Domain	BT Level*	PLO
• Understand the major field theoretical perspectives	ds of study and	С	2	2
• Differentiate between the major observational, correlation, and experimental designs.		С	3	2
• Identify the major parts of the nervous system		С	3	2
* BT= Bloom's Taxonomy, C=Co domain	gnitive domain, P=	=Psychomoto	r domain, A= Af	fective
SDGS addressed in the course:	4 (Quality Educa	tion)		
	5 (Gender Equali	ity)		
10 (Reduced Inequalities)				
Teaching Mode: the course will b of contents and course activities or		-	-	stantial portion
Course Contents				
Theory				

Basics concepts of psychology and research methods; Brain and behavior; Human development; Sensation and perception; States of consciousness; Conditioning and learning; Memory cognition, language, creativity and intelligence; Motivation and emotion; Sex, gender, sexuality; Personality, health, stress and coping; Social behavior.

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Sessional Exam Home Assignments, Quizzes, Presentations, Final Exam

Text Book:

1. Dennis, C. and O. M. John. 2011. Psychology, Modules for Active Learning. 12th Ed. Wadsworth Publishing, Nelson Education, Toronto, Canada

- 1. David, G. M. 2009. Psychology. 9th Ed. Worth Publishers, Basingstoke, UK.
- 2. Kalat, J. W. 2016. Introduction to Psychology. 11th Ed. Cengage Learning, Boston, MA, USA.
- 3. Kassin, S. 2017. Psychology in Modules. 12th Ed. Pearson Custom Publishing, Australia.
- 4. Plotnik, R. and H. Kouyoumdjian. 2013. Introduction to Psychology. 10th Ed. Cengage Learning, Belmont, CA, USA.

	REMOTE SENSING AND G ANIMAL SCI	3(2-1)		
Learning Object	ctives			
Basic conHow press	se, the student should be able to lear ncepts and techniques of GIS and Ro cision farming and how it's applied mage Processing techniques	emote sensing	ences and dairy	y farming
Learning Outed	Jines			
At the end of the course the students will be able to: Domain BT Level* PLO				PLO
• Know ag sector	pplications of GIS in livestock	С	1	2

• Make interactive agricultu the internet	Make interactive agricultural based map in the internet		2	2
Demonstrate different GIS	5 devices	С	3	2
* BT= Bloom's Taxonomy, C=Co domain	gnitive domain, P	=Psychomotor	domain, A= A	Affective
SDGS addressed in the course:	2 (Zero Hunger)			
	8 (Economic Gr	owth)		
	9 (Industry, Inno	ovation, and In	frastructure)	
Teaching Mode: the course will b	e taught in hybrid	l learning mod	e offering a su	bstantial portion
of contents and course activities or		-	-	-
Course Contents				
Theory				
Introduction to GIS and Remote Sensing; GIS and RS Agriculture; Role and functions of GIS and Remote Sensing in Animal Sciences and dairy farming; Applications of GIS in Livestock sector, Precision farming in Agriculture; Integrating GPS field data into the GIS database; Digital Image Processing Techniques in Animal Sciences; GIS and RS applications in disease management; Interactive agricultural based map in the internet.				
Practical				
Demonstration and use of different GIS devices; Use of basic Remote sensing techniques;				
Computer program and software u	sed for Digital Im	age processing	ŗ.	
Teaching Methodology:				
Lectures, Written Assignments, Practical labs, Semester Project, Presentations				
Course Assessment:				
Sessional Exam Home Assignments, Quizzes, Project, Presentations, Final Exam				
Text Book:				
 Nicolas B., M. Zribi. 2016. Land Surface Remote Sensing in Agriculture and Forest. Elsevier Publishers. New York, NY, USA. 				

Suggested Readings:

- 1. Jian, G. L. P. Mason. 2009. Essential Image Processing and GIS for Remote Sensing. Wiley Publishers, Oxford, UK.
- 2. Keith, R. M. 2013. Resource Management Information Systems. Remote Sensing, GIS and Modelling. CRC Publishers, Boca Raton, Florida, USA.
- 3. Marinus, G. B. 2001. GIS and Remote Sensing Techniques in Land- and Water management. Springer Publishers. Netherlands.
- 4. Steven, M. D. and J. A. Clark. 1990. Applications of remote sensing in Agriculture. Butterworth-Heinemann, Oxford, UK.

INTRODUCTION AND ROLE OF ICT IN AGRICULTURE

3(2-1)

Learning Objectives

This course will enable the students to:

- Understand the scope of ICT in agriculture, networking and communication media
- Understand precision and smart farming and how it is applied in Agriculture
- Comprehend how it can be used to mitigate the impacts of climate change

Learning Outcomes				
At the end of the course the students will be able to:		Domain	BT Level*	PLO
• Know applications of ICT	in agriculture	С	1	2
• Know different tools of ICT and networking used in smart farming and precision agriculture.		С	2	2
• Demonstrate applications of ICT in agriculture		С	3	2
* BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain				Affective
SDGS addressed in the course: 2 (Zero Hunger)				
8 (Economic Growth)				

9 (Industry, Innovation, and Infrastructure)
(industry, intovation, and initiastracture)

Teaching Mode: the course will be taught in hybrid learning mode offering a substantial portion of contents and course activities online through learning management system

Course Contents

Theory

Module I: Role of ICT in agriculture; How ICT technologies can be used in agricultural productivity; Role of ICT in crop management; Fertilizer and pesticide uses, and pest control management; How ICT help in crops and livestock research and development; How ICTs promote sustainable food systems for Sustainable Development in agriculture.

Module II: Introduction to Geographical Information System (GIS), Geographical Positioning System (GPS) and Remote Sensing (RS) and Its applications in disease/pest management, water management and Climate-Smart Agriculture; Precision farming in Agriculture; Integrating Geographical Positioning System field data into the GIS database; Interactive agriculturally based map in the internet, Fundamental of Internet of things (IoT) and its role in smart farming. How smart farming solutions is useful for monitoring the crop field with the help of sensors (light, humidity, temperature, soil moisture, crop health and automating the irrigation system.

Practical

Use of web and mobile applications for weather prediction, soil information, pesticide and fertilizer application; Use of ICT in reducing risk; pest detection and disease identification; Water scheduling. Application of remote sensing and GIS in agriculture. How meaningful data collect through IoT based solution. How farmer or grower can monitor the field condition remotely through ICT technologies.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Sessional Exam Home Assignments, Quizzes, Project, Presentations, Final Exam

Text Book:

1. Willen, Z. 1994. Improving the transfer and use of agricultural information: guide to information technology (English). World Bank discussion papers; no WDP 256 Washington, D.C., USA: World Bank Group.

- 1. Price, H. 2012. The Really Useful Book of ICT in Early Years. Taylor and Francis Group, London, UK.
- 2. Rodrigues, M. and A. Rodrizuez. 2013. Information and Communication Technologies for Agricultural Development in Latin America Trends, Barriers and Policies. United Nations Press, Santiago, Chile.
- 3. Nicolas, B. and M. Zribi. 2016. Land Surface Remote Sensing in Agriculture and Forest. Elsevier Publishers, NY, USA.
- 4. Keith, R. M. 2013. Resource Management Information Systems. Remote Sensing, GIS and Modelling. CRC Publishers, Florida, USA.
- 5. Agricultural Internet of Things and Decision Support for Precision Smart Farming, Academic Press, 2020