REPORT

on

INTERNATIONAL SEMINAR ON PULSES AND WHEAT FOR FOOD SECURITY

February 25, 2018

Muhammad Nawaz Shareef University of Agriculture MULTAN, PAKISTAN

Contents	Page No.
Executive Summary	03
Recommendations	04
Seminar venue	05
Technical Program	06-07
Inaugural Session	08
Technical Session	09
Wheat for Food Security	09
Pulses for Food Security	11
Concluding Session	12
Address by Dr. Noor-ul-Islam	12
Vote of Thanks	12
Distribution of Souvenirs	13
Sponsors	14
List of Participants	15
Press Coverage	22
Presentations	26

EXECUTIVE SUMMARY

Agriculture is the backbone of Pakistan; it contributes 19.5 percent in GDP and engages 42.3 percent labour force of the country. The problems of food security and agriculture should be viewed within the context of the broader structural transformation as Asia becomes increasingly urban and nonagricultural.

Keeping in view the importance of cereals and pulses and current food security and nutrition related challenges in Pakistan, the Department of Plant Breeding and Genetics and Department of Agronomy has organized an international Seminar on Pulses and Wheat for Food Security February 25, 2018. The seminar provided a platform for thought-provoking discussion on the said topic. The seminar began with the recitation of Holy Quran. The worthy Vice Chancellor, Prof. Dr. Asif Ali gave the thanking remarks to the chief guest Mr. Javaid Shah (Federal Minister of Irrigation), foreign delegation and all the distinguish guests in the seminar. He also discussed that how administration solve the water resource issue and how did they develop a successful agricultural system in Jalalpur- Pirwala. On behalf of the chief guest Mr. Javaid Shah (Federal Minister of Irrigation), Mr. Ibn-e-Hussain, IG Police (R) welcomed all foreign delegates, participants and the management team of the seminar on discussing such a meaningful topic. The seminar proceeded with the technical sessions on wheat and Pulses.

Wheat

- (i) Innovative breeding and production strategies for wheat
- (ii) Hybrid wheat for food security
- (iii) Challenges and prospects of wheat cultivation in PakistanPulses
- (i) Temperature tolerance and yield in chickpea: optimizing phenology
- (ii) Challenges and prospects of pulses cultivation in Pakistan
- (iii) Microbial inoculation for sustainable production of legumes

The seminar cover all the major topics related to wheat and pulses and their role in alleviating the problems of food security. A number of renowned foreign and local scientists delivered talks during technical sessions.

The foreign scientists included Prof. **Prof. Dr. Richard Trethowan** (Director, IA Watson Research Centre, and Australia), **Dr. Chris Tapsell** (Global Wheat Breeding Lead at KWS,

UK), **Dr. Jacob Lage** (Head of Wheat Pre-Breeding at KWS, UK) and **Dr. Nick Bird** (Research scientist at KWS, UK). While the local scientists included **Prof. Dr. Zulfiqar Ali** (Chairman, Department of Plant Breeding and Genetics), **Dr. Makhdoom Hussain** (Ex-Director Wheat Research Institute, AARI, Faisalabad), **Prof. Dr. Irfan Baig** (Dean, Faculty of Social Sciences and Humanities, MNSUAM), **Dr. Shahid Riaz Malik** (Program Leader Pulses, National Agricultural Research Center, Islamabad), **Dr. Khalid Hussain** (Director, Arid Zone Research Institute, Bhakkar), **Prof. Dr. Zahir Ahmad Zahir** (Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad). Overall the seminar was quite successful in addressing different issues related to wheat and Pulses. The foreign scientists also visited the hybrid wheat research trial along with other wheat research trial at University farm. The sessions were presided over by the scientists who drafted final recommendations for each technical session conducted after thorough discussion. The recommendations were presented by the session chairs individually.

RECOMMENDATIONS

- We have to develop our agricultural commodities in such a way that these products can sustain even in water stress conditions
- Genomic Selection promises to revolutionize wheat breeding for the future.
- Development of zone-specific wheat varieties suitable for different cropping systems under changed climate scenario.
- The microbial inoculation will be an effective tool for sustainable production of legumes.
- We should contribute in pulses production through promoting and sustaining consumption, supporting production and strengthening the value chain
- There is a need to develop varieties with higher yield potential that respond to improved management practices so as to meet the increasing demand of pulses.
- Emphasized on teamwork for the motive of food security with ever-memorable line

Seminar Venue

The seminar was held at Muhammad Nawaz Shareef University of Agriculture, Multan (MNSUAM). The modern city of Multan is the 6th largest city of Pakistan and is the center of Islamic mystical Sufi Culture. The city is considered one of the safest city for the foreign tourists and is well connected with the world through international air flights, and connected to rest of Pakistan through domestic air flights, railways and all type of public transport. The MNSUAM was established in 2012 and has been recognized by Higher Education Commission, Pakistan. Since then, it has emerged as a fast growing chartered public sector University that is aspiring to mark its name among the best agriculture universities in the country. The University distinctly aims to "provide systems and leadership in professional learning, research and outreach to promote agricultural production, nutrition, entrepreneurship and community service" to meet its mission of "food security and knowledge economy through intellectual and social transformation".

Technical program (25 February, 2018; Sunday)

Session 1. <u>Wheat for Food Security</u>

Chair: Dr. Noor-ul-Islam, CEO PARB

Co-chair: Dr. Makhdoom Hussain

Time	Activity/Presentation	Resource Person
9:00 am	The arrival of guests and registration	Respective committees
9:30 am	The inaugural session of spring festival	Chief Guest
9:45 am	Recitation from Holy Quran & Naat	
9:50 am	Welcome Address	Prof. Dr. Asif Ali
		Vice Chancellor, MNSUAM
10:00 am	Genomic strategies enhance genetic gain in	Dr. Richard Trethowan
	practical wheat breeding	Director, IA Watson Research
		Centre, Australia
10:20 am	KWS – an independent, global seed	Dr. Chris Tapsell
	company	Global Wheat Breeding Lead at
		KWS, UK
10:40 am	"Hybrid wheat for food security" – a UK	Dr. Jacob Lage
	funded research project	Head of Wheat Pre-Breeding at
		KWS, UK
11:00 am	Tea Break	-
11:30 am	Molecular markers and resources used in	Dr. Nick Bird
	KWS' wheat breeding programs	Research scientist at KWS UK
11:50 am	Status of Wheat in Punjab/Pakistan	Dr. Makhdoom Hussain
		Ex- Director Wheat Research
		Institute, AARI, Faisalabad.
12:10 pm	Challenges and prospects of wheat	Dr. Javed Ahmad
	cultivation in Pakistan	Director Wheat Research
		Institute, AARI, Faisalabad.
12:30 pm	Architecting wheat for fog capturing	Prof. Dr. Zulfiqar Ali
		Chairman, Department of Plant
		Breeding and Genetics
12:50 - 2:00	Lunch	-
pm		

Session 2. <u>Pulses for Food Security</u>

Chair: Dr. Richard Trethowan

Time	Activity/Presentation	Resource Person
2:20 pm	Temperature tolerance and yield in chickpea: optimizing phenology	Dr. Richard Trethowan Director, IA Watson Research Centre, Australia
2:40 pm	Pulses breeding in Pakistan: current status and future needs	Dr. Abid Mahmood Director General (Agri. Research, Punjab)
3:00 pm	Importance of pulses on food security and poverty alleviation	Prof. Dr. Irfan Baig Dean, Faculty of Social Sciences and Humanities,MNSUAM
3:20 pm	Challenges and prospects of pulses cultivation in Pakistan	Dr. Shahid Riaz Malik Program Leader pulses National Agricultural Research Center, Islamabad
3:40 pm	Challenges and opportunities for chickpea seed production and procurement	Dr. Khalid Hussain Director, Arid Zone Research Institute, Bhakkar
4:00 pm	Microbial inoculation for sustainable production of legumes	Prof. Dr. Zahir Ahmad Zahir ISES, University of Agriculture, Faisalabad
4:40 pm	Vote of Thanks	Prof. Dr. Zulfiqar Ali Chairman, Department of Plant Breeding and Genetics, MNSUAM

Co-chair: 1) Dr. Zahir Ahmad Zahir 2) Dr. Shahid Riaz Malik

1. Inaugural session

The seminar began with the recitation of Holy Quran by Hafiz Muzamil. Afterward, Prof. Dr. Hammad Nadeem Tahir started the inaugural session of the seminar and introduced the audience about the importance of pulses and wheat in securing food security. He invited Worthy Vice Chancellor MNSUAM, Prof Dr. Asif Ali, for welcome address.

Welcome Address by the Vice Chancellor

The worthy Vice Chancellor, Prof. Dr. Asif Ali gave the thanking remarks to the chief guest Mr. Javaid Shah (Federal Minister of irrigation), foreign delegation and all the distinguish guests in the seminar. He also discussed that how administration solve the water resource issue and how did they develop a successful agricultural system in Jalalpur- Pirwala.

He also emphasized on the collaborative research behavior among the scientific community to resolve the world food security concerns. He appreciated the role of KWS R&D wing and Dr. Richard with the overwhelming tribute on their great efforts in the development of successful hybrid wheat development and establishment of genomic selection models to increase the efficiency of breeding techniques.

Address by the Chief Guest

On behalf of the chief guest Mr. Javaid Shah (Federal Minister Irrigation), Mr. Ibn-e-Hussain, IG Police (R) welcomed all foreign delegates, participants and the management team of the seminar on discussing such a meaningful topic. He said that collaboration, cooperation among academia, farmers, industry, researchers and scientist can resolve emerging worldwide problems. He further told that scarcity of water is a big challenge and major threat to whole world and we have to develop our agricultural commodities in such a way that these products can sustain even in water stress conditions. One collective team effort can convert our deserts into the lush green fields. On the behalf of the Federal Minister, Mr. Ibn-e-

Hussain expressed his in a sentence that wishes you (scientific community) success in the field of Agriculture and Production.

2. Technical Session

Wheat for Food Security

The foreign delegate proposed different genomic selection strategies for developing resistance in wheat. They also explain how genomic selection is a new plant breeding method that uses statistical modeling to predict how a plant will perform, before it is field-tested. Novel statistical models and bioinformatics tools, combined with increasingly abundant genomic information, have enabled the deployment of predictionbased breeding methods such as Genomic selection.

Genomic Selection promises to revolutionize wheat breeding for the future. Giving breeders the ability to select based on predictions rather than observations will result in much improved genetic gains and efficiency in wheat breeding.

They also briefed about "KWS an independent, Global Seed Company". The KWS portfolio consists of a broad, proprietary, diversified gene pool for the development of agricultural crops. Research and development wing of the KWS focused on the cereals, sugar beet and maize (Americas and rest of the world). They also talk on "Hybrid Wheat for Food Security: *Halfway through the journey*. They pointed out that population explosion (10 billion people by 2055) is the key factor in the upcoming time and it is the challenge for the scientific community to address the concept of food security for the humanity. He also mentioned that this project is 5-year UK- funded project and having different global partners e.g. Norman Darvey, University of Agriculture Faisalabad, Muhammad Nawaz Shareef University of Agriculture Multan, University of Sydney and KWS. They also described the objectives of project that are given below.

- 1- Development of hybrids for testing in Pakistan, Australia and Europe
- 2- Improvement of Norman's hybrid system
- 3- Exploitation of heterosis in Australian and Pakistani germplasm

They emphasized the development of male sterile wheat through chemical hybridization agents, genetic engineered nuclear-encoded system and biological native trait systems (CMS & NMS). In the end, they emphasized on teamwork for the motive of food security with the ever-memorable line "We should all feel blessed by the privilege of working together in peaceful environments so that we can contribute to food production in the poor and hungry nations on earth".

Whereas the local speakers presented status of wheat, challenges and prospects of wheat cultivation in Punjab/Pakistan. Pakistan obtained 26200 tons of wheat from area 9050 ha by the year 2016-2017. Ayyub Agriculture Research Institute, Faisalabad in the year 2016-2017, released six varieties of wheat; ihsan-16, ujala-16, johar-16, gold-16. fatehjang-16, anaj-17 and two barley varieties; jau-17 and s Sultan-17.

Future research directions; breeding for nutrition enhancement in wheat (genetics, bio-fortification and value addition) to overcome malnutrition problems, Development of zone specific wheat varieties suitable for different cropping systems under changed climate scenario (special focus on rice zone), development of stress resilient wheat varieties (drought, terminal heat stress, frost, salinity and disease) and development of nutrient efficient varieties and integrated plant nutrient management system.

Session Pulses for Food Security

Dr. Richard Trethowan gave a second talk on 'Chickpea pre-breeding and research for temperature tolerance'. He described the importance of grain crops for sustainable Agriculture and their existence in Australia as wheat 60%, barley 19%, canola 8%, pulses 7%, oats 4% and sorghum 2%.

He proposed that National Research HUB focused on improving grain legume productivity and agricultural sustainability. Enhance N2-fixation of grain legumes for annual and rotational crop production.

The local speakers provided the information regarding the 'Importance of Pulses in Food Security'. They explained that Pakistan is one of the world's largest producers of the agricultural commodities and ranks 77th out of 109 on the Global Food Security Index. Six out of 10 Pakistanis are food insecure.

The scope of pulses in reducing the food insecurity, pulses can play an important role for the food security of large proportions of populations, particularly in Latin America, Africa and Asia, where pulses are part of traditional diets and often grown by small farmers. Pulses can contribute significantly in addressing hunger, food security, malnutrition, environmental challenges and human health. In the end, he concluded that we should contribute in pulses production through promoting and sustaining consumption, supporting production and strengthening the value chain. Dr. Khalid Hussain, Director Arid Zone Research Institute Bhakkar, highlighted the importance of seed in successful crop production. The role of seed in providing sustainable crop production is mainly through new varieties. Dr. Zahir A. Zahir described co-inoculation with Rhizobia and PGPR containing ACC-deaminase. A novel

discussion was made regarding multi-strain bio-fertilizer for sustainable production of pulses (Mung bean, Chickpea & Lentil). He also proposed that by using the product rhizogold, yield could be increased 16% in mungbean and 19% in chickpea at farmers' field level. Therefore, he concluded the following information that microbial inoculation is an effective tool for sustainable production of legumes. Application of Rhizobium significantly improved, nodulation efficiency of legumes, eventually enhanced growth and yield through various mechanisms.

Concluding Session

Dr. Noor-ul-Islam, Director Pakistan Agricultural Research Board (PARB), applauded the efforts of Vice Chancellor **MNS-UAM** for successfully conducting an international seminar on importance of pulses and wheat in food security. He praised the efforts of faculty, students and administrative staff of the University in this regard.

He assured that PARB will continue to support the scientific projects of MNS-UAM and would continue its collaboration with the University.

Vote of Thanks

Prof. Dr. Zulfiqar Ali (Chairman, PB&G) thanked everyone especially the foreign scientists who came a long way to make this conference successful. He also applauded the support of government research institutions and private sector firms for holding International Seminar on Pulses and Wheat for Food Security. Prof. Dr. Zulfiqar Ali congratulated everyone on successful completion of conference.

Distribution of Souvenirs

The invited speakers and oral presenters were awarded with shields and certificates by Dr. Noor-ul-Islam and Worthy Vice Chancellor MNS-UAM, Prof. Dr. Asif. Ali.

SPONSORS

The following agencies sponsored the conference.

- 1. Punjab Agriculture Research Board
- 2. The University of Sydney
- 3. Australian Centre for International Agricultural Research
- 4. USAID
- 5. DFID

List of Participants

Sr. #	Name	Designation
1.	Nasir Abbas	Student M.Sc PBG 4 th
2.	Dr. Baqir Sb	AP. SES
3.	Dr. Muqarb Ali	AP. AGRO
4.	M. Naeem Akhtar	PhD (Scholar) SES
5.	Shahid Mushtaq	Bsc
6.	Dr. Jaffar Ali	PBG- UAF
7.	Mehmood Ijaz	Bsc. SST
8.	Waqas	Bsc. SST
9.	DR. Ummara	AP
10.	Ayesha Ajmal	Bsc. Biotech
11.	Dr. Tanveer ul Haq	SES HOD
12.	Dr.Imran	SES
13.	Fatima Mazhar	Biotech
14.	Mirza Abid Mehmood	Lecturar Phd Scholar
15.	Rao Umar Akram	Lecturar Phd Scholar
16.	M. Waqar Sabir	Msc PBG
17.	M. Afzal	Phd. Entomology
18.	Noraiz Qamar	B.sc AGRO
19.	Tayyaba Nisar	Biotech
20.	Maryam	SST
21.	Mudassir Rafiq	PBG. Bsc
22.	Nouman Khalid	PBG. Bsc
23.	Imran Ullah	PBG. Bsc
24.	Dr. M. Habib ur Rehman	AP. AGRO
25.	Dr. Abid Ali	AP. ENTO
26.	Dr. Manan	AP. BBA
27.	Asif Mehmood Arif	Lecturar UAM
28.	Dr. Arsalan	AP. UAM
29.	Ali Amar	Phd. PBG
30.	Shoaib Llaqat	Phd. PBG
31.	Dr. Ghulam Haider	AP
32.	Farhan Ullah Khan	Bsc. AGRO
33.	M. Nasir	Bsc. AGRO
34.	Dr. Nasir Nadeem	AP. Agri Economics
35.	Saba Maryam	Phd. PBG
36.	Farukh	Phd. PBG
37.	Dr. Salman	PBG
38.	Dr. Ali BAkh	PBG. Ghazi Uni DG khan
39.	Areeba Fatima	PBG
40.	Muneeba Haider	PBG
41.	Dr. Nadia Iqbal	AP. MNS-UAM
42.	Babar Farid	Lecturer MNS-UAm
43.	Zoha Abeer	Msc. 4 th . PBG
44.	Usman Jamshed	Lecturer UAM
45.	Dr. Mirza A. Qayyum	AP. UAM
46.	M. Ali Sher	Lecturer UAM

47.	Dr. M. Hammad Nadeem	Professor
48.	Mudassir Aziz	Lecturer AGRON
49.	Dr. Khurram Mubeen	AP. AGRON
50.	Dr. Abdul Ghaffar	AP
51.	Mr. M. Usman	Lecturer PBG UAM
52.	Dr. M. Shahbaz	AP
53.	Dr. Umar Faroog	AP
54.	Ms. Afshan Eman	Lecturer FST
55.	MR. M. Arif	Lecturer SES
56.	Dr. Amar Matloob	AP. AGRON
57.	Mr. Furgan Ahmed	Lecturer PBG
58.	Dr. Kashif Razzaq	AP. Horticulture
59.	Daniyal Ahmad	Msc. AGRON
60.	Dr. Sarmad Frogh Arshad	AP. BIOTECH PBG
61.	Ghulam Mustafa	MSc. AGRON 2 nd
62.	Dr. Umer Ijaz	AP. Economics
63.	Sumaya Riaz	Student BZU
64.	Madiha Ashraf	Student BZU. Bsc
65.	Dr. M. Ameen	AP. HORTI
66.	Ahmed Ibrahim	Student Bsc
67.	Ishrat Zaman	St. M.Phil AGRO
68.	M. TAyyab	Phd
69.	Shahzad Ahmad Junaid	Phd
70.	Shafia Saba	Phd. ENTO
71.	Kaleem Rao	Bsc
72.	M. Usman	Bsc
`73.	Saima Rashid	Lecturer. Botany PBG
74.	Dr. Unsar Naeem	Lecturer
75.	Umair Rasool Azmi	PBG Bsc
76.	Abdul Manan	PBG. Project Officer
77.	Maria Iqbal	M.Phil PBG
78.	Rana. M. Zia ul Haq	Progressive Farmer
79.	M. Shafiq	Pulses Botanist FSD
80.	M. Rafiq	Director Pulses FSD
81.	M. Saleem	AB FSD(Pulses)
82.	Amir Afzal	BIO 6 th
83.	M. Rafi	BIO
84.	Asim Razzaq (No Money)	
85.	Saad Parvaiz	M.phil Student. AGRON
86.	M. Arsaln Khalid	Phd. PBG
87.	Hafiz M. Amir	M.Phil AGRON
88.	Mahnoor Naeem	PBG. Bsc
89.	M. Arsalan	PBG. BSc
90.	H.M. Waqas	PBG. BSc
91.	Tehmina Sattar	Biotech. BSc
92.	Dr. Shahid Iqbal	AP. AGRON
93.	Dr. RAO M. Ikram	AP. AGRO
94.	Tuba Arshad	PBG

Report: International Seminar on Wheat and Pulses for Food Security (February 25, 2018)

95.	Bahar Ali	M.Phil PBG
96.	Marwaah	Biotech
97.	Taiyba Anwar	BIO 6 th
98.	Abdul Rehman	ENTO 6 th
99.	Dr. M. Asif Raza	VMD
100.	Mr. M.Abu Bakar	Lecturer PBG
101.	Mr. Umar Iqbal	Lecturer PBG
102.	Dr. Zulfiqar Ali	Professor PBG`
102.	Ms. Plosha Khanum	Lecturer
105.	Dr. M. Ishtiaq	AP. ENTO
101.	Dr. Ali Baksh	AP. PBG Dg Khan
105.	Ch. Hanif	4B Seed Form
100.	Rashid Ali	Editor Info
108.	M. Azam	Photography
109.	Najam ul Saqib	Regional Manager
110.	Ihsan Karim	Hybrid Breeder(UAF-MNSUA)
111.	Ghulam Abbas	Farmer
112.	M. Khursheed	Farmer
113.	Mulazim Hussain	Farmer
114.	Dr. Abu Bakar	AP. UAF
115.	Dr. Sajid Mehmood	Associate SES
116.	Imran Ullah	Student
117.	Shameer	Studnt
118.	Dr. M. Aslam	UAF
119.	Ghulam Farid Akhtar	
120.	Khawaja M Shoaib	
121.	Dr. Manzor	RARI Bahawalpur
122.	Dr. Masood	RARI Bahawalpur
123.	Dr. Habib ur Rehman	
124.	Dr. Amir Nawaz	Chairman Horticulture
125.	Mrs. Amir Nawab	BZU
126.	M. Rizwan	
127.	Sajjad Hassan	Farmer from Bakhar
128.	Rashid Manzoor	Major Marketing(FFC)
129.	Dr. Faqeer Hussain Anjum	Agronomist
130.	Rana Ahmed Muneer	Director Agri Extension
131.	Dr. Noor ul Islam	CE PARB
132.	Abbas Aziz	Fouji (FFC)
133.	Qamar Shakeel	Botanist Fodder Research
134.	Dr. M. Sajjad	Group head ORGA
135.	Dr. Israr Saeed	Chairman NASF
136.	Dr. Bashir Javeed Paracha	Ex Assistant Prof of Dermatology
137.	Sabir Ali Mirza	PTV Reporter
138.	Naveed Asmal Khaloon	AD information
139.	Mudassir Irshad	ARM,PMG,P1P1P Multan
140.	Niaz Hussain	ARO, AZRI Bhawalpur
141.	M. Kashif	Former
142.	Jamil u din Bujdar	Former

Report: International Seminar on Wheat and Pulses for Food Security (February 25, 2018)

143.	Dr. M. Sohail	AP. DG Khan University
144.	Awais Rasheed	
145.	Abdur Rehman	SO
146.	Sajjad Ullah Malik	SSO 4B
147.	Dr. Waqar Malik	PBG, BZU
148.	Dr. Abdul Qayyum	PBG, BZU
149.	Dr. Sajid Farid	FFC
150.	Hasan Yasar	Student BSc
151.	Seemab Shafqat	Student BSc
152.	Jamshed Nouman	Student BSC
153.	M. Shabbir	Student BSC
154.	Misbah Afzal	Student BSC
155.	Zulkifl Ashraf	Student BSC
156.	M. Shoaib	Student BSC
157.	Sami Ullah	Student BSC , AGRI 4 th
158.	Dr. Irfam Baig	AP, MNSUAM
159.	Rashid Manzoor	Biotech 6 th
160.	Dr. Altaf Hussain	CB(CRS),BWP
161.	Dr. Irum Aziz	Lecturer PBG, DGK
162.	Farjaad Mujtaba	Entomology 6 th
163.	M. Nadeem	Biotech 6 th
164.	Aqeel Haider	BSC 4 th
165.	Wagas Ali	BSC (Hons)
166.	M. Nazim	MSc, Agronomy
167.	Asmatullah	MSc Agronomy
168.	M. Afzal	Farmer
169.	Wagas Ali	FST 6 th
170.	Ali Hasnain	FST 6 th
171.	Asjid Mehr	Biotech 6 th
172.	Riaz Ahmed	Rajab Sons Eng
173.	Dr. Zahir Ahed Zahir	Prof SES , UAF
174.	Ammadu-din	PBG, 8 th
175.	M. Irfan	Rathan Maize
176.	M. Sajjad	Rathan Maize
177.	Arsalan Mehmood	Rathan Maize
178.	M. Aqib	Msc (Hons),2 nd Semester,AGRO
179.	M. Zahid Igbal	BSc (Hons), Semester, Agriculture 2 nd
180.	Umair Arif	BSc (Hons), Semester, Agri. B 2 nd Semester
181.	Usama Ahmad	BSc (Hons), Semester, Agri. B 2 nd Semester
182.	Shafa Nayas	MSc (Hons), Horticulture
183.	Zermeen Tariq	BSc (Hons), AGRI
184.	Arzoo Azam	Employ Horticulture
185.	Zohaib Asghar	Student
186.	Kashif Ali	Student
187.	M. Arshad	Student BSc
188.	Aman Ullah	Student BSc
189.	Ahmad Ibrahim Jalali	Student BSc
190.	Hassan Raza	Student BSc

Report: International Seminar on Wheat and Pulses for Food Security (February 25, 2018)

191.	M. Noor Muzamil	Student BSc
191.	Arsalan Ahmad	Student BSc
192.	M. Siraj	Student BSc
195.	H. Sami Ullah	Student BSc
195.	Sohail Yousaf	Student BSc
195.	M. Insaf	Student BSc
190.	Arslan Abid	Student BSc
197.	M. Shahbaz	Student BSc
198.	Nida Munir	FST (6 th)
200.	Mishal Malik	FST (6 th)
200.	Rimsha Umar	FST (6 th)
201.	Misbah Sharif	FST (6 th)
202.	Wagas Ali	FST (6 th)
203.	Ali Hasnain	FST (6 th)
204.	M. Zaki Khan	FST (6 th)
203.		MSc (2 nd), PBG
206.	M. Majid Ali Huda Bilal	6 th Entomology
207.	Sarmad Malik	6 th Entomology
208.	Munir Ahmad	Student/MSc (Hons)
	M. Umer Nawaz	
210.	Wi. Offer Nawaz	Student/Fruit Processing & Preservation Sort Course
211.	M. Rafige	Student/Fruit Processing & Preservation Sort
211.	Wi. Kaliye	Course
212.	M. Bilal Riaz	Student/MSc (Hons),AGRO
212.	Zarmeena Khan	Student/MSc (Hons),AGRO
213.	Qurat ul Ain	Student/MSc (Hons),SES
214.	Saba Wajid	Student/MSc (Hons),SES
215.	Talha Rasheed	Student/MSc (Hons),SES
210.	Mehak Fatima	Student/MSc (Hons),SES
217.	Syed Akash Murtaza	Student/MSc (Hons),SES
210.	Hunzala Shahid	Student/BSc, AGRI
220.	Qasim Bhatti	Owner of Farms
220.	Sajid Rashid	Farmer
222.	Inam Ullah	Farmer
223.	Imran	Farmer
223.	Dr. Dilburgh M	Farmer
225.	Dr. M. Qadir Ahmad	AP
225.	Dr. Nazar Farid	AP
220.	Dr. Hafiz M. Nasrullah	Agronomist, A.R.S.,Khanewal
228.	M. Luqman	Agronomic Research Station,Khanewal
229	M. Rafig	Asst. Dist Officer
230	Qaswar Abbas	Farmer
231	Najeer Hussain	Duasa Foundation
232	Mirza Asad	Veterinary BZU
232	M. Akmal Khan	Veterinar BZU
233	Dilshad	Student
234	M. Naeem Wazir	Farmer
235	Ghulam Farid	Ph.D Scholar
230	ljaz Hussain	DVM-BZU
	,	at and Pulses for Food Security (February 25, 2018)

238	M. Ishaq Zain	Commerce
238	Ruqaya Masood	Soil Science
239	Abeer Nawaz	Soil Science
240	Abdul Ghafoor	Farmer
241	M. Falah	Farmer
243	Riaz Hussain	Asst. Abu Bakar Hall
243	M. Imran	Electrician
245	M. Safdar	Agri-BZU
246	Sheraz Abid	FVS-BZU
247	Dr. Abid Hussain	AP-MNS-UAM
248	Kamran	Farmer
249	M. Tahir Habib	Student
250	Abdul Rasheed	Student, BS Math
251	M. Awais Anjum	MSc(Hons),FST
252	Nabeel Munir	BS-IT,MNSUA
253	Hassan Mouvia	BS-IT, MNSUA
254	Javid ur Rehman	Agri-BZU
255	M. Imran	Farmer
256	M. Shafiq	Student
257	Fatehullah	Student
258	Gulzar Ahmed	Farmer
259	Shah Fahad Hashmi	Student
260	Ameer Hamza	Student
261	M. Adnan	Farmer
262	Nadeem Akhtar	Farmer
263	Ghulam Abbas	Farmer
264	M. Shahzad	Farmer
265	Gulzar Ahmad	Farmer
266	Noor Muhammad	Farmer
267	Rashid Mukhtar	Ph. D Scholar
268	M. Farooq	Farmer
269	Qadir Mahmood	Sun Crop
270	Irshad Ahmad	Farmer
271	M. Iqbal	Farmer
272	Murtaza	Soil science
273	Ghulam Farid	Pesticide Business
274	M. Tariq	DVM
275	Touqeer Aslam	Farmer
276	Ali Abbas	Student
277	Adnan Fareed	Soil & Environmental Sciences
278	M. Amir	Farmer/Student
279	Ahsan ul Haq	Agriculture
280	Dr. Aamer	LSDD
281	M. Faisal Azeem	Agri, Business & Marketing
282	Shahzad Saleem	Soil Science
283	Sajid Ghafoor	Entomology
284	Azhar	Farmer
285	Zafar Abbas	Agri Extension

Report: International Seminar on Wheat and Pulses for Food Security (February 25, 2018)

286	M. Umar Saleem	Agriculture
287	M. Majeed	Agriculture
288	Shah Jahan Bukhari	ARO Bahawalpur
289	Numan Khalid	Student
290	Muhammad Arslan	Student
291	Hafiz Muhammad Waqas	Student
292	Muhammad Tayyab	Student
293	Mudassir rafiq	Student
294	Mahnoor Naeem	Student
295	Tayyaba	Student
296	Areeba Fatima	Student
297	Robina Aziz	Student
298	Tuba arshad	Student
299	Usman akram	Student
300	Hafiz Mehmood	Student
301	Noraiz	Student
302	Hafiz Waseem	Student
303	Ahmad Nasir	Student
304	Jawad afzal	Student
305	Tasweeb	Student

Department of Public Relations & Publication's MNS-UAM

41 01 Luts 212-12-12-2074 15-2018 (1) 26-1439 Disie 90 14 10

£ تَقْتُ فِ 6/2

۲ ماد مر رفیل، وجهر عن العب بالك بر بالك الله العص بروليسراوالكر دوالتقار مل . اين فيلني آل موهل ما تشور برو فیسر (اکثر حرفان احد بیک ، برد کر ۱ موهل ما تشور برو فیسر (اکثر حرفان احد بیک ، برد کر ۱ اید ر باسو تنقل انکه انگر ریسر ما منظر اسلام آباد (ا معالی استید اور اصطفاط کے مطابق میں اور اور میں میں معالی اور سید استی میں میں اور اور میں میں کے طریق اور اور میں استعمال اور کے حادی کے اراض والم موادر کی حادی کی سرح میں میں میں میں میں میں میں میں میں فیندل 2018 کے شلط می تالی شب معالی کی۔ الالی قص ، نیوز الالی کے سام یک ڈائس ، مقبل محکور ، مکان اور سوکی قص قابل کے گے ۔ المان عر إلى كاكى كرمونوع يضوص المان المحال كاكى كرمونوع يضوص المحاق

المان: نواز شریف زری یو زور ی می سرتک فیسیول سے سلط می منعقد و تجرل نائف می طلب وطالبات ثقافتی رقص چی کرتے ہوتے دوسری جانب ملک میں یانی کی قلت سے مسلے کو شیلو کی صورت میں اجا کر کیا جارہا ہے

7 2012 - 2012 - 2012 - 2012 - 2012 2012 - 2012 - 2012 - 2012 - 2012 2012 - 2012 - 2012 - 2012 - 2012 2012 - 2012 - 2012 - 2012 - 2012 2012 - 2012 - 2012 - 2012 - 2012 2012 - 2012 - 2012 - 2012 - 2012 2012 - 2012 - 2012 - 2012 - 2012 2012 - 2012 - 2012 - 2012 - 2012 2012 - 2012 - 2012 - 2012 - 2012 2012 - 2012 - 2012 - 2012 - 2012 2012 - 2012 - 2012 - 2012 - 2012 2012 - 2012 - 2012 - 2012 - 2012 2012 - 2012 - 2012 - 2012 - 2012 2012 - 2012 - 2012 - 2012 - 2012 2012 - 2012 - 2012 - 2012 - 2012 2012 - 2012 - 2012 - 2012 - 2012 - 2012 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 2012 - 20 7 یستیرل 2018 کانستاد با سرکی بیت 20) و م کباک ان فیشیول علی توکس کیلیے فیستیر چشو کانستاد کیا جارہ کا جاکر کوئی کوفوق بری می معد کاهد شیر جامد المثان ا کام از کر کے محقق مادی کا کے کے ا مالم جامد برو مرد کا کو اختیان الدیکان الدیکان الدیکان برو مرد کا کو تعقیقت معین الاز خوانکه الکر تکون

42 20

Jan by the Con Marker of the Control ADr. Chris Tappell) しちいうちょうりしてい ADr. Chris Tappell) しちいううしとしたを たいといろいでといましたいしたい NURANIX, کاری (ایم است میں (Auchan Trethowan) رقبر ایکر است میں (Rhuda E-Bang) بلحان سالہ ایک فرید ریدہ آئی کھنے من بلد المنترين المعالي المعالي من المداول من المعالي من المداول من عن المعالي من المعالي المعالي من عدمة الإحصال من المعالي من المعالي من عدمة الإحصال من المعالي من المعالي المعالي من عدمة المعالي من عدمة المعالي من من المعالي من عدمة المعالي من عدمة المعالي من المعالي المعالي من عدمة المعالي من عدمة المعالي من المعالي من المعالي المعالي من عدمة المعالي من عدمة المعالي من المعالي 14T Jac Bar Chine Chine hert C (ایکنگراستی مناوع مردمی مطابقه السکی کی تصوری العکادت الکی کی کی السکی السکی

Page #3

MULTAN: Students of Muhammad Nawaz Sharif University of Agriculture participating in tableau during cultural night.

Hydroponics unit in MNSUA inaugurated

MULTAN

Federal Minister for Water Resources, Syed Javed Ali Shah on Sunday inaugurated first hydroponic unit, established at Muhammad Nawaz Sharif University of Agriculture (MNSUA). The federal minister inspected hydroponic unit, which is the process of growing plants in sand, gravel, or liquid, with added nutrients but without soil during the seminar on the importance of food security and pulses. Renowned international

Renowned international scientists namely Director Pre Breeding Dr Jacob Lage, Research Scientist Dr Nick Bird, Global Wheat Breeding Lead Dr Chris Tapsell, Prof Dr Richard from Australia, Prof Dr Khuda-E-Bargi (Uzbekistan), Director Pulses Research Institute Faisalabad Muhammad Rafique, Chairman Plant Breeding and Genetics Prof Dr Zulifgar Ali, Dean Faculty of Social Sciences, Prof Leader Pulses National Agriculture Research Centre Islamabad Dr Shahid Riaz and others delivered lectures on the importance of food.—APP

BUSINESS RECORDER

MULTAN: Students of Muhammad Nawaz Sharif University of Agriculture present a tableau during cultural night at the university.—APP photo by GM Kashif

Page # 15

Presentations

Two examples:

- Marker assisted recurrent selection (MARS) for resistance to crown rot in wheat (*Fusarium pseudograminearum*)

 genomic selection within populations
- 2. Genomic selection for heat tolerance in wheat - genomic selection across populations

The University of Sydney

 $\Delta G=ir\sigma_{_{A}}/T$

i = selection intensity

r = selection accuracy

 $\sigma_{\scriptscriptstyle A}{=}$ root of the additive variance

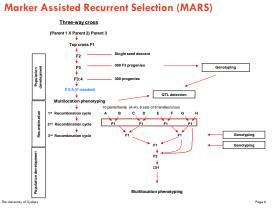
T = cycle time

Example 1. Breeding for crown rot resistance

Fusarium disease of the crown and stem base

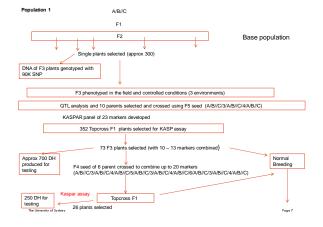
- Spreads from infected plant material
- Conservation agriculture retains stubble that acts as source
- Infection of stem bases/crown cuts off vascular tissue

Poge 2


The University of Sydney

Poge 3

27


Crown rot

- Very little genetic advance in 30 years
- Phenotyping is difficult with low heritability
- Sources of resistance generally have poor agronomic type
- Resistance is complex

The University of Sydney

Page 5

Crown rot - response to selection

	STEM BROWNING (MM)		STEM BROWING (MM)	
2017 experiment with all classes	Population 1		Population 2	
PARENTS	38.3	α	23.9	ac
BASE POPULATION (1st recombination)	25.0	b	32.4	b
Single recombinants (2nd recombination, 10 - 13 markers selected)	23.4	b	26.8	a
Double recombinants (3rd recombination, 18 - 20 markers selected)	18.9	с	22.7	с
CHECKS	47.6	d	41.5	е

Approx 16,000 observations/population, includes replication within and between plots 19 parents including original 3 and 16 recombinants Approx 100 single recombinants/population Approx 100 double recombinants/population 6 checks

The University of Sydney

Example 2. Breeding for heat tolerance

- Increasing temperatures = decrease in wheat yields (250 400 kg/ha for every 1° C rise in average maximum temperature)
- Heat shock (3-5 days > 35° C) significantly reduces yield if experienced at meiosis/flowering (grain seed number)
- High temperature >35° C during grain filling reduces yield (reduced grain weight)
- The inheritance of heat tolerance is complex

Phenotyping: three-tiered strategy

 Genotypes replicated in 2-4 dates of sowing annually

sub-set maintained in all years

best performing lines retained for the next season new lines included annually

 Heat tolerance of selected lines confirmed using infield heat chambers

> Page 10 **1**

 Reproductive heat tolerance of selected lines confirmed in the glasshouse

The University of Sydney

Page 9

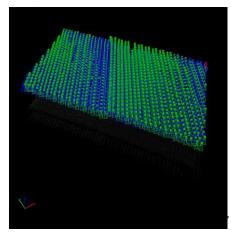
The University of Sydney

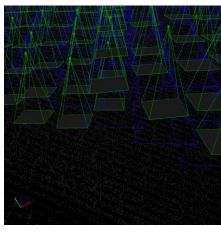
Phenotyping: three-tiered strategy

- Irrigation used to limit interactions with water stress
- Sowing dates fixed to +/- 3 days each year
- Sowing dates sown adjacent to each other
- Trial sites in Narrabri NSW, Cadoux WA and Horsham Vic.

ođe 11

Scaling up phenotyping

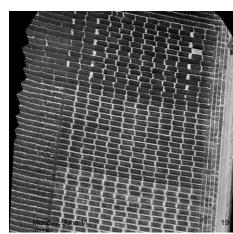



The Heat Trial TOS1 at IA WATSON

The red dots represent the drone flight planning of the site.

Page 16

RAY CLOUD visualization, inside PIX4D software of each image. The angles represent the angle the image was captured at.

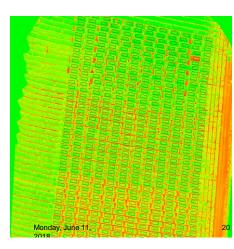

Ray Cloud: Closeup

The drone's height above the trial and its GPS location (latitude, longitude and altitude) are calculated

This information is used to make a 3D map, its also used to smooth errors associated with the movement of the aircraft.

Poge 18

Page 17

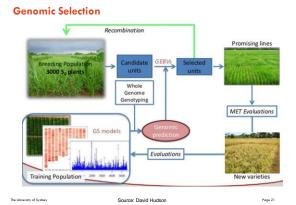

Stage # 1 : Preprocessing

Digital numbers are "mozaiced" into a single, 3D image (x,y,z).

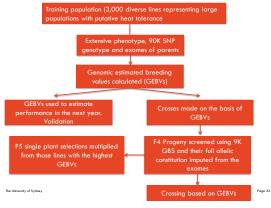
Grid alignment is checked at this stage.

Geographic optimization conducted using ground control points (markers with highly accurate GPS in the field).

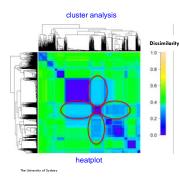
Page 19



Stage # 2 : Temperature calculation


Digital numbers are converted into actual temperatures.

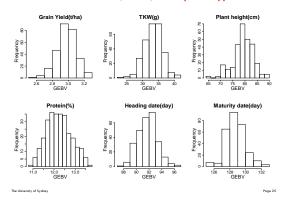
1000s of pixels per plot and are extracted at an average of 1000s of 2cm x 2cm pixels


Poge 20

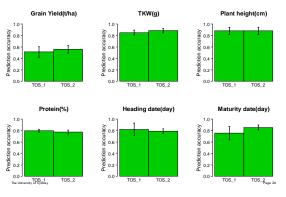
Genomic selection for heat tolerance

Training population structure (diversity analysis)

- Several families and one larger subpopulation (diagonal)
- Some connection across families through common ancestors
- Genomic prediction accuracy estimated across families


The University of Sydney

- All years of data were used and adjusted for spatial effects in each trial/environment (y_env= µ+range+row+replicate+genotype+error)
- Heritabilities were calculated for each trait $h^2 = \frac{\sigma_a^2}{\sigma_a^2 + v_{/2}}$ (Holland et al. 2003)
- All years of data were then combined in a genomic BLUP model that included a GxE effect fitted as the interaction of genomics with the environment. The GEBV was then estimated as the sum of the normal mean breeding value plus the interaction term. ($BLUE_{env} = \mu + Environment + genotype + error$)


Poge 23

Poge 24

BLUP

GEBVs based on 2014, 2015, 2016 phenotypic data

Prediction accuracy of 2017 response

Conclusions

- Genomic strategies reduce cycle times and this potentially offsets any loss of accuracy
- Grain yield accuracy lowest and is strongly affected by genotype-by-sowing time interaction

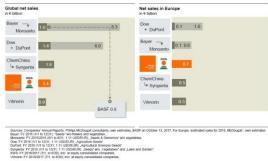
Acknowledgements

- Mahbub Rahman (PhD student)
- Hans Daetwyler (DEDJTR)
- Sang He (DEDJTR)
- Rebecca Thistlethwaite (PhD student)
- Grains Research and Development Corporation

Poge 27

The University of Sydney

Poge 28



Plant Breeding Serves Fundamental Demands

Top Global Agricutural Seed Companies Net Sales of Agricultural Crops

ids". I" and "Lawn and Garder

The University of Sydney

Monda

33 The University of Sydney

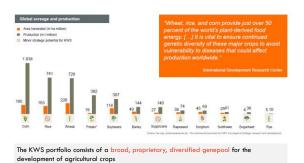
Degree in Agronomy; Ph.D. in Seed Physiol

Monday, June 33, 2018

KWS – Quick Financial Summary

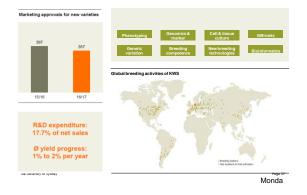
Strong market positions in the global agricultural crop market. Market leader in sugarbeets and hybrid rye Diverse gene pool with proprietary varieties

Sustainable business model with strong fundamer pillars (global demand for food and feed) Strategy and management with long-term orientati enabled by family shareholders


The University of Sydney

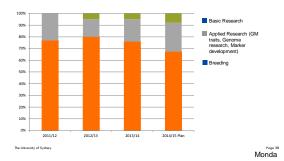
	2016/2017		
Net sales	1,075.2	1,036.8	+3.7%
R&D expenses	190.3	182.5	+4.3%
EBIT	131.6	112.8	+16.7%
EBIT margin (%)	12.2	10.9	

Monda


Global Importance of Agricultural Crops

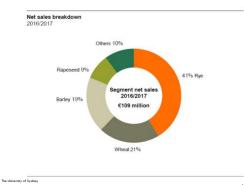
The University of Sydney

Poge 35 Monda



The Key to Success: Efficient Variety Development

KWS R&D Budget


Percentage of KWS research activities is continiously growing

In 2014/15, 33% of R&D budget was used for basic and applied research

KWS Group Across the Globe

Wheat is Part of our Cereals BU Activities

Breeding Wheat - Helping to Feed the World

Grain-based foods, like those produced with wheat, provide complex carbohydrates, which are the best fuel for our bodies, are low in fat, high in fibre and provide vitamins, especially the 4 key B vitamins, Thiamin, Riboflavin, Niacin, and Folic Acid, as well as iron. A Host of non-food production including:

|--|

VERY DIVERSE QUALITY REQUIRING MARKETS

Monda

Overview of General Breeding Objectives for KWS

Yield Sugar/energy/grain yield Quality Food, pr

Nutrient use efficiency Nitrogen, Phosphate

Agronomic properties

Energy

Monda

- Specific Breeding Objectives for KWS Winter Wheat Breeding
 - 2. Resistance to diseases
 - - Stalk breakage
 - Take-all • Mildew •
 - Yellow rust
 - • Wheat leaf rust
 - Septoria leaf blotch
 - . DTR Tan spot Fusarium head blight
 - Glume blotch
 - Viral diseases

With the exception of winter-hardiness abiotic stresses do not yet play a major role in our breeding targets

The University of Sydney

1. Yield potential and stability

Grain yield

Plant density

Seeds per spike

• Spike density

• Winter hardiness

Resistance to lodging

Thousand seed weight

3. Quality characteristics

Milling quality

- Ash content
- Flour yield Grain hardness
- Ethanol quality
- Starch content
- Ethanol yield

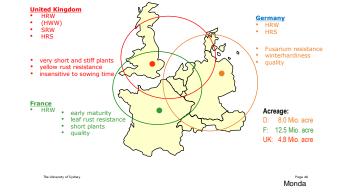
Baking guality Protein content

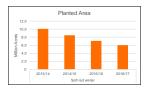
- Sedimentation value
- Falling number
- Water absorption Pastry quality

Baking volume

Monda

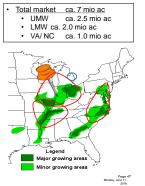
Monda


The University of Sydney


Key Breeding Drivers at KWS

- Access to excellent (proprietary) breeding material
 Genetic resources / Genetic variability
- Focus on time to market
- Use of modern breeding technologies
 Breeding methods (DH, GS, ...)
 Phenotyping (Breeders eye, sensors, ...)
 Genomics and biotechnology (incl. traits)
- Efficient organization
 Excellent employees
 Efficient (breeding processes)
 Integrated approach
- Innovation driven through research co
- Strong link to market
 Focus on quality
 Appropriate variety protection

The University of Sydney



The University of Sydney 4

External Collaboration – KWS

- KWS has many collaborations with third party organisations
 - Universities
 - Research Institutes
 - Technology & Trait providers
 - Competitors (Pre-competitive R&D)
- A major theme for KWS has always been this 'collaborative' approach, with Germplasm Exchange and the value of the 'Breeder's Exemption' in PVR as cornerstones of how we work

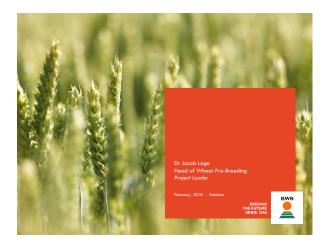
External Collaboration – Wheat Focus

- KWS interacts with many in R&D activities in wheat and values working with partners who are open-minded and genuinely value collaboration
- In Wheat we provide not only funding and in-kind contributions to research projects, we also provide staff to act on advisory boards and committees for many organisations

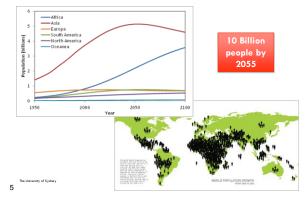
The University of Sydney

Monda

External Collaboration – Hybrid Wheat


 It is as part of our collaboration activities that we have become involved in the UK Government funded project on Hybrid Wheat that brings us to Pakistan today,

	COUNCILS UK	Gateway to Research	Innovate UK
which is partly funded by	Hybrid Wheat for F Leed Participant Kee UK Limited Catego	ood Security	
Department for Internatic Development [DFID]	and Pockdon an real as benefiting the UK wheed gover Partners in traffic, Polisher, Australia and UK will work to an innovative, non-CMO, sen-chronically faces, typical hybrid systematives using molecular and cytopenetic to coordinate the grapice, with the main aim of improving to	which shard neural antitive sky priority prior year by not reach is indee on the top the second at instantic of top priority prior typics of the second at instantic of the priority second at the second optimum considering second results of the second at the second optimum consistent of second at the second at the second optimum consistent of second at the second at the second optimum consistent of second at the second at the second optimum consistent of the second at the second at the second optimum consistent of the second optimum consistent on the second optimum consistent of the second optimum consistent on the second optimum consistent on the second optimum consistent optimum consistent on the second optimum consistent	Funded Value: E853,849 Funded Pariod Exp 51-34 28 Funder: Exmate UK Project Datas: Acline
	htt	p://gtr.rcuk.ac.uk/projects?ref=101	918


The University of Sydney

Monda

The world is getting hungry!

Food is a key component of security

Hybrid wheat for food security – a shared vision

Norman Darvey 1945-2017

"we so often talk the talk, but we also need to walk the walk; deliver outcomes that matter, addressing global food needs"

The University of Sydney

Page 56

Hybrid wheat for food security - UK-funded project

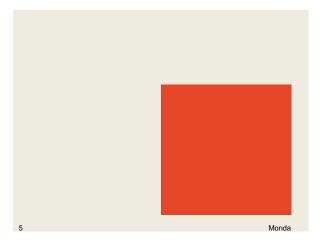
- Norman Darvey had a vision and an alternative hybrid wheat system
- Global group of partners
 Norman Darvey
 - Norman Darvey
 Universities of Agriculture
 - Faisalabad & Multan
 - University of Sydney
 - KWS
- UK funding provided by the Department for International Development
- 5-year project

The University of Sydney

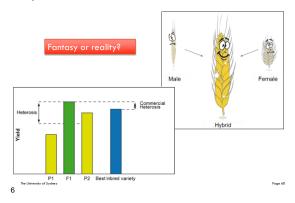
International Grains Research Centre

Kick-off meeting, Australia Oct 2015

Page 57


Hybrid wheat for food security - objectives

- Develop hybrids for testing in Pakistan, Australia and Europe
 - Sydney, Prof. Richard Trethowan
 UK, Nick Bird
- Improve Norman's hybrid system
 Cytogeneticist Peng Zhong
- Exploit heterosis in Australian and Pakistani germplasm
 - Prof. Zulfiqar Ali and Mr Ishan Karim

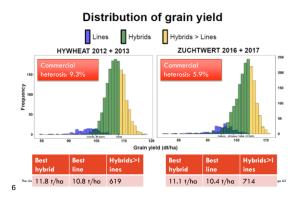

The University of Sydney

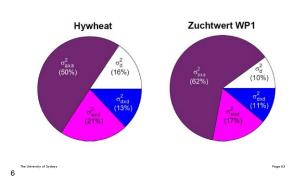
Project meeting, Australia Oct 2016 Page 58

Hybrid wheat

Hybrid wheat: why?

The University of Sydney


6



Page 61

Hybrid wheat: yield gain

Hybrid wheat: where does the yield come from?

Hybrid wheat: where to find heterosis and yield stability

6

Hybrid wheat: many benefits

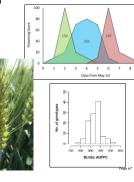
- Money!
 - Increased revenue for all
 - Possibly to move into regions currently determined as "unprofitable"
- Increasing yield
 - = High yield potential areas: $\sim 10\%$
 - Marginal environments: 15-25%
- Yield stability

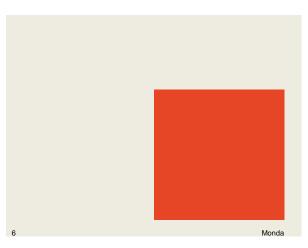
6

- Some anecdotal evidence that hybrid wheat has increased yield stability
- Possibly more important than yield

Hybrid wheat: how to make wheat sterile?

- Chemical hybridisation agents (CHA)
- Genetic engineered nuclear-encoded systems
- Biological, native trait, systems
 - Cytoplasmic male sterility (CMS)
 - Triticum timopheevii
 - Aegilops kotschyi
 - Nuclear male sterility (NMS)
 - ms1
 - Environment sensitive genetic male sterility


The University of Sydney



Hybrid wheat: floral biology is a key trait

- Self-pollinating -> cross-pollinating
 - Anther extrusion
 - Pollen production
 - Flowering duration

The beginning

lt all started in Norman's back garden

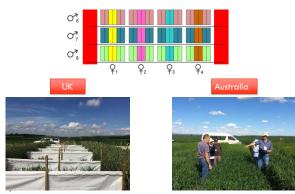
The University of Sydney

6

Scaling up

The work moved to University of Sydney's breeding station in Narrabri

University of Agriculture Faisalabad moved there for one year

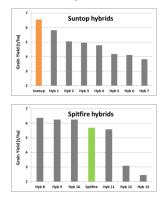


The University of Sydney

7

Page 70

First hybrids produced


Hybrids tested – In Australia

Decent results from first year

University of Sydney

Page 73

Hybrids tested – In Pakistan

7

Page 74

Hybrids tested – In South Africa

AR19/SST374

Hybrids tested – In South Africa

The University of Sydney

Hybrids tested – In UK and Germany

Project meetings – In Pakistan

The University of Sydney

Page 7

Project meetings – In Australia

Even made a visit to India

sity of Sydn

8

Page 80

Had some failures

you are not trying hard enough"

Page 81

...and some fun

The second half of the project

- Pakistan
 - Multi-location yield trials with Pakistani hybrids
 - Quality test of hybrids
 - Production of new hybrids and initiate hybrid breeding
- Australia
 - Multi-location yield trials
 - Further improvement of hybrid system
- UK
- Multi-location yield trials with hybrids based on KWS parents
 India
 - Multi-location yield trials with hybrids based on Indian parents

Page 83

Keep working together for food security

"We should all feel blessed by the privilege of working together in peaceful environments so that we can contribute to food production in the poor and hungry nations on earth"

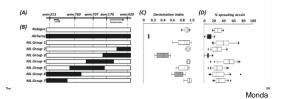
The University of Sydney 8

Molecular marker resources

- KWS' genotyping facility is based in Einbeck, Germany and handles samples from all KWS crops.
- The genotyping facility process approximately: - 55,000 wheat DNA extractions
 - 25,000 wheat samples run on arrays, predominantly for genomic selection
 - 50,000 Wheat KASP datapoints for MAS and research projects.
- KWS access all public resources for wheat genotyping 9K Wheat Array (Illumina)
 - Wheat iSelect Array (Wang et al.)
 - Wheat 820K Array (Affymetrix)
 - 35K Wheat breeders array (Affymetrix)
 - 35K breedwheat Array (Affymetrix)

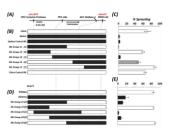
insity of Sydney

Monda


Trait mapping to marker deployment

- For a specific loci the long term use of arrays is not cost effective.
- The faster the trait can be mapped and tracked using KASP markers the better. _
- KWS Wheat pre-breeding in conjunction with the Biotechnology team employ a traditional approach to QTL mapping and gene cloning.
- Segregating populations are assessed phenotypically and lines are genotyped.
- Traditional QTL mapping conducted to determine region of interest. Depending on size of region further recombinant mapping maybe warranted.
- Recombinants in the QTL region are identified from the population and only these lines are phenotyped.
 Phenotypes and further genotyping of critical recombinants determine gene position.
- testing identifies the gene of interest.

Monda


Trait mapping to marker deployment

- · Robigus x Alchemy population identified as having differential phenotypes in pre-harvest sprouting
- Traditional QTL mapping was done on a DH population identifying chromosome 4A
- · NILs across the identified region were made for QTL validation

Trait mapping to marker deployment

Recombinants in the region identified from 2 populations. Further genotyping and phenotyping narrowed region allowing candidate genes to be identified

TAMKK-3, identified as causative gene via functional gene analysis

Monda

WAGTAIL

- <u>Wheat Association Genetics for Trait Analysis and Improved</u> <u>Lineages.</u>
- BBSRC funded project with NIAB and multiple commercial companies.
- Project started 2011 and ended in 2016.
- Project aims
 - Genetically fingerprint 480 predominantly UK winter wheat varieties.
 - $-\,$ Phenotype for the 5 major fungal disease in wheat.

Yellow rust population changes

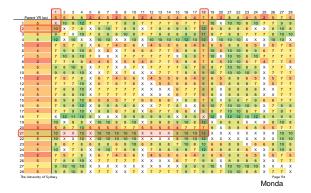
- 2013 saw massive shift in the UK yellow rust population.
- New race named the warrior race.
- In the following years yet more changes have occurred.
- Many efforts in trying to explain what has happened and managing the current situation are on going.

The University of Sydney

Monda

Results – Yellow Rust

- 12 resistance loci for yellow rust identified and validated post warrior race.
- No current variety has all 12 resistance loci.
- To date no information on which gene(s) is most effective.
- How are we using this information?

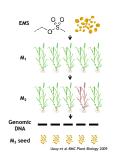

 - Number of resistance loci per variety information passed to breeders.
 Maximum Yellow rust genetic performance per cross can be predicted.

versity of Sydney

Monda

Max yellow rust genetic performance

Maximising yellow rust genetic resistance


- This new genetic data is being used now.
- Profiling current lines in National testing.
- Designing the next set of crosses to be made as part of the breeding process.
- Contributing to decisions on acceleration of lines through the breeding process.
- All this information whilst being used currently in in-bred lines can and will form part of the breeding strategies for hybrid wheat.

The University of Sydney

Monda

Introducing novel allelic variation – The pipeline

The University of Sydney

 EMS mutagenesis introduces base pair substitutions leading to new alleles

- Exome capture and sequencing of M2 DNA identifies these base changes and can predict the effect on gene.
- 1200 mutated lines have been selfed to M4 families.
- The population has 6.4 million mutations in its exome.
- 70,000 predicted genes will have non-functional alleles
- Cadenza mutants being utilised in wheat pre-breeding program and multiple projects involving KWS

Poge 97 Monda

Introducing novel allelic variation - The pipeline

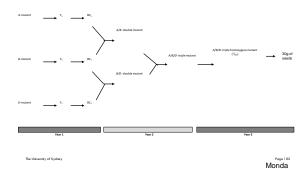
- Using Blast you can search for your gene(s) of interest.
- 10,000,000 mutant alleles across both tetraploid and hexaploid populations.
- Identify the most appropriate mutation (premature stop, splice site variant, etc).

The University of Sydney

Monda

Introducing novel allelic variation – The pipeline

	资源教教	John Innes Centre	Earlham Institute 🔘 🕍	ini 🚺
Welcome t		t Target Induced Loc	Decoding Likery Judiers	IG) website
This resource const	ets of TILLING populations develop	ped in tetrapioid durum wheat ov 1	ronos' and hexeptoid bread wheat or Cadema' as p	
We have ce-sequer	ced the exome of 1,505 Kronos an		mina next generation sequencing, aligned this new ed on the protein erroration available at Ensembl P	
Search TIL	LING data		BLAST Scaffold	
	Cadencia () Knonos 🖲 Boch warch twimt (scatficid, line or gene	e)	1	
Type in list of a linearch th gene (eq. montfold	earch terms (scaffold, line or gene e. Ostabure: 3021 Trans. 1AL, 95233873027 Tri			
Type in list of a descript to gene. (eq. motificit metificit resources resources and documentar	earch terms (scaffuld, live or gene e. detailance lay) Troom (AA, MELINETIC) Tro (my, TANAC_CAS_2AA_enaff am (mg, Cateman0250) (on of the website and population	449_146_98718490C.1), _0341776: IBL_0341776; cc.	1	SeedS


Introducing allelic variation – The pipeline

Introducing allelic variation - The pipeline

Backcrossing scheme to KWS Variety

- Using Blast you can search for your gene(s) of interest.
- 10,000,000 mutant alleles across both tetraploid and hexaploid populations.
- Identify the most appropriate mutation (premature stop, splice site variant, etc).
- 100,000 mutations will cause truncations (premature stop, splice site variant).
- Order these mutants ($\pounds 250$ each with FTO, $\pounds 25$ research only).
- Design KASP marker to track mutation using Polymarker (www.polymarker.tgac.ac.uk).
- Many targets need to be in homozygous null state in all 3 genomes for maximum (or sometimes any) effect to be seen.
- KWS have approximately 20 mutants in back crossing program at any one time.

The University of Sydney

Poge 101 Monda

Summary

- KWS has a large genotyping facility which processes in excess of half a million samples a year.
- Approximately 10% of these samples are for the global wheat programs,
- Cost effective use of genotyping is essential to breeding programs.
- KWS are heavily involved in trait mapping and efficient usage of these traits in breeding programs.
- The UK wheat community collaborates closely in many projects to achieve more than any individual can.
- Effective utilisation of outputs from projects is essential to ensure progress.
- Public resources like the tilling libraries are opening up new, faster methods of genetic gain for public and commercial organisations.

The University of Sydney

Monda

STATUS OF WHEAT , CHALLENGES AND PROSPECTS OF WHEAT CULTIVATION IN PUNJAB/PAKISTAN

Dr. Makhdoom Hussain makhdoomhussain@yahoo.com

™ **Monday**y June 11, 2018 105 Page 105

AREA, PRODUCTION & YIELD OF WHEAT IN TOP 10 WHEAT PRODUCING COUNTRIES (2016-17)

Area (000) ha	Production (000) Tons	Yield Tons/ha
India (30600)	China (130000)	China (5.37)
Russia (28600)	India (98380)	Ukraine (4.02)
China (24200)	Russia (82000)	India (3.22)
USA (15211)	USA (47371)	USA (3.11)
Australia (12500)	Canada (27000)	Russia(3.06)
Pakistan (9050)	Ukraine (26500)	Canada (3.00)
Canada (9000)	Pakistan (26200)	Pakistan (2.90)
Turkey (7800)	Australia (21500)	Turkey (2.69)
Iran (6800)	Turkey (21000)	Iran (2.21)
Ukraine (6600)	Iran (15000)	Australia (1.72)
The University of Sydney		Page 106

Global Wheat Scenario

- Global Production
- n 742 mt > 26 mt
- Pak Production
- Punjab Production
- Pakistan
- > 20 mt 7th Wheat Producer

WHEAT YIELD INCREASE OVER THE YEARS IN PUNJAB - PAKISTAN

Year	Yield Kg/ha (Punjab)	Yield Kg/ha (Pakistan)	
2014-15	2763	2726	
2015-16	2817(2%)	2753(1%)	
2016-17	3014(9%)	2900(6%)	
Global wheat production during the current year is 742 million tons as compared to last year 754 million tons (- 1.62%)			

WHEAT: PROJECTED REQUIREMENTS PAKISTAN			
Year	Requirement (m. tones)	Av. Yield (tones/ha)	
2020	28.8	3.2	
2025	31.4	3.5	
2030 34.3 3.8			

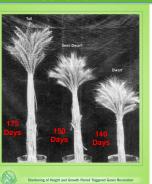
It includes human consumption (120 Kg / person with population growth of 1.8% per annum), feed and seed (10% of production), food security reserve (1.0 million tones)

HISTORY OF GREEN REVOLUTION

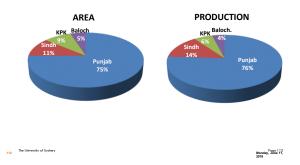
– Pakistan 1965-66 - Mexico 1966-67

India 1967-68

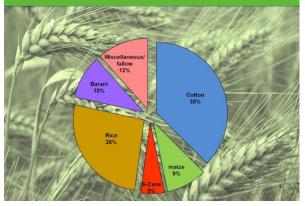
 It was a young Pakistani researcher (Dr. Manzoor Ahmad Bajwa) who, in 1961, selected the cross that later became known as MexiPak; a high yielding, white grain wheat that became one of the mega-varieties that launched the Green Revolution in the world.



Page 110

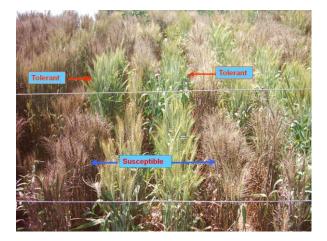

SHORTENING OF HEIGHT AND GROWTH PERIOD **TRIGGERED GREEN REVOLUTION**

Name of variety	Plant Height	Maturity Days
C-591	150	175
Maxi Pak-65	115	150
Shafaq-06	80	140

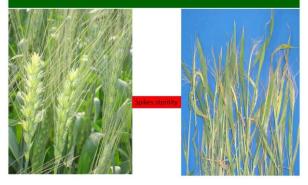


Provincial Share in Area and Production of Wheat

WHEAT AREA IN DIFFERENT REGIONS OF PUNJAB



ISSUES/ CHALLENGES

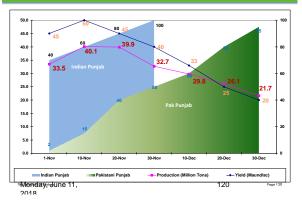

•Climate change scenario

- •Drought (especially erratic rains in barani tract) rains, winds and hail storms at the time of harvesting • Frost stress • Terminal Heat Stress (Global warming) 0.5°C increase in temperature reduce wheat yield by 0.45 Tons/ha. •Late wheat Planting 17-20 kg/acre/day losses or 1% loss per day Change in planting time
- •Diseases especially rusts Up-to 70% loss
- Change in appearance of rusts. ($Lr\ -\ Yr\ -\ Lr$) Bunts
- .
- Wheat Blast Apparently not found in Pakistan
- Soil health, fertilizer (cost, availability & imbalanced use) Imbalanced Fertilizer = 30-55% Low organic matter = < 1%
- Insect/pest especially Aphid Up-to 40% loss
- •Weeds
- Upto 40% losses , resistance in weeds against weedicides Seed 20 25 % replacement annually Subtraction 2018 15 2018

Page 115

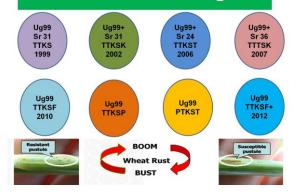
Frost stress

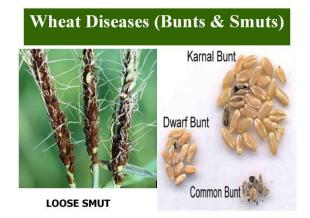
Frost stress



Frost (Intensity & effect)

SOWING DATE PATTERN AND ITS IMPACT ON WHEAT PRODUCTION IN PUNJAB


Wheat Diseases (Rusts)



Stem rust

Brown rust

MUTATION IN RACE Ug-99

Wheat Blast Devastation

Aphid (Coccinella spp)

Weed problem

Problem Soils

2.70 million hectares (Punjab) 6.68 million hectares (Pakistan)

Strategies to overcome effects of climate change

- Breeding strategies:
 - Breeding of heat, drought and frost tolerant varieties
 - Short duration wheat varieties
 - Physiological breeding using modern gadgets
 - Canopy temperature
 - Flag leaf stomatal conductance
 - Photosynthetic rate
 - Greenness
 - Electrolyte leakage (Cell membrane thermo-stability)
 - Use of molecular tools for efficient selection

Screening Against Heat

Strategies to overcome effects of climate change

Management strategies

- Change in cropping pattern
 - Include Pulses in rotation e.g. Wheat-Mung-Rice, etc.
 - Resource conservation.
 - Wheat planting in standing cotton.
 - Bed sowing to save water and to reduce lodging.
 - Zero till and direct seeded rice.
 - Sowing of wheat at proper time.
 - Application of Zinc to improve enzymatic reaction in plants.

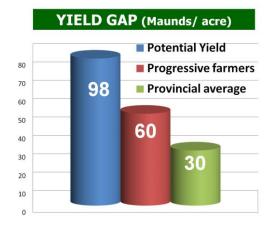
Wheat In Standing Cotton

- No land preparation
- Cost saving
- Timely crop planting
- Builds soil organic matter
- Reduces compaction
- Improves yield
- Environment friendly

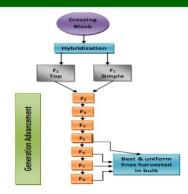
Zero Till Planting

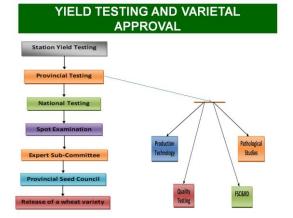
- No land preparation
- Cost saving
- Timely crop planting
- Builds soil organic matter
- Reduces compaction
- Improves yield
- Environment friendly

Research Institutes Working on Wheat


- WRI, Faisalabad
- RARI, Bahawalpur
- BARI, Chakwal
- AZRI, Bhakkar
- · Biotechnology, Faisalabad

Research Disciplines


- Breeding
- Pathology
- Entomology
- Agronomy
- Quality
- Biotechnology
- Seed production
- Shuttle Breeding:
 - Kenya – Kaghan
 - Murree
 - Murre


68

VARIETY DEVELOPMENT PROCEDURE

SEED SYSTEM

Need for Quality Evaluation

National and International compulsions

Wheat variety development program

- o Quick and reliable quality assessment
- Evolution of wheat varieties with good quality traits
- Resistant varieties
- o Nutrient rich varieties

Wheat and milling tests

- Moisture Content
- Ash Content
- Protein Content
- Thousand Kernel Weight
- Starch
- Gluten
- Sedimentation
- Single Kernel Characterization System (SKCS

Flour and dough tests

- Falling Number
- Flour Color Analysis
- Farinograph
- Extensograph
- Glutomatic
- Fermentograph

Capacity Building

Trainings imparted

- Training on Wheat Breeding/ Production Technology to:
 - Master trainers of Extension Wing
 - Scientists from other provinces
 - Farmers
- Rust Identification to:
 - Extension wing of Agriculture
 - Pest Warning and quality control
- Guidance/practical training to University students:
 - Internship programme
 - Post-graduate & Ph.D. research

Trainings conducted by Wheat Research Institute, Faisalabad

Capacity Building

Foreign Trainings Received

- Dr. Javed Ahmad
- Dr. G.M. Subhani
 Faqir Muhammad
- Dr. M. Abrar
- Anjam Javed
- Nadeem Ahmad
- Muhammad Hussain
- Faqir Muhammad
- Dr. M. Akbar
- Javed Anwar
- Sabina Asghar
- Muhammad Zulkiffal
- Huma Safdar — Rabia Sultan
- Kapla Sultan
- Dr. Makhdoom Hussain U

Kenya, USA, Mexico Ethiopia, UK, Turkey Nepal Singapore Singapore USA, Mexico, Kenya USA Mexico Mexico Syria Nepal, USA, Mexico Mexico USA USA USA, Russia, Nepal, Mexico, Syria, Turkey, Australia, Kenya

Visit of international scientists

CIMMYT	Dr Micheal Jones	Australia
CIMMYT	Dr Hans Braun	CIMMYT
CIMMYT	Dr David Marshall	CIMMYT
ICARDA	Dr Xian Ming	USDA, USA
ICARDA	Dr K.D. Joshi	CIMMYT
ICARDA	Dr Abdul Rahman Bashir	CIMMYT
ICARDA	Dr Upali Samarajeewa	Sri Linka
Australia	Dr L. G. Wigemark	EU
USA	Dr Anne Mackanze	FAO
CIMMYT	Dr I. W. Borne	USDA
	Dr Kulvender Singh	UC DAVIS
	CIMMYT CIMMYT ICARDA ICARDA ICARDA ICARDA Australia USA	CIMMYT Dr Hans Braun CIMMYT Dr David Marshall ICARDA Dr Xian Ming ICARDA Dr K.D. Joshi ICARDA Dr Abdul Rahman Bashir ICARDA Dr Upali Samarajeewa Australia Dr L. G. Wigemark USA Dr Anne Mackanze CIMMYT Dr I. W. Borne

Training of WRI Staff by Foreign scientists

Farmer interaction

Farmer's days arranged by WRI at farmers fields

Farmer's days arranged by WRI

Farmer Days

Seed Distribution

Demonstration on farmers fields

100th Birthday celebrations of Dr. Norman Borlaug

100th Birthday celebrations of Dr. Norman Borlaug

Achievements of AARI in 2016-17

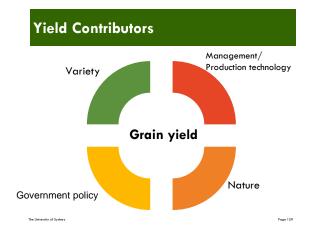
Six wheat varieties released

- Ujala-16 Johar-16 Gold-16
- Ihsan-16 Fatehjang-16 Anaj-17

Two Barley Varieties

- Jau-17 Sultan-17
- Advance line (V-12066) found resistant to all 3 rusts on the basis of two year studies by CDRI, Islamabad.
- Advance line (V-14154) performed excellent on Pakistan basis with yield of 4329 kg/ha and was on top position with yield of 4266 kg/ha on Punjab basis in NUWYT 2016-17.
- Wheat line (V-14124) attained top position in PUWYT 2016he ut 17, producing 4360 kg/ha.

Achievements of AARI in 2016-17


Six w Cereal Technology Laboratory got accredited " ISO – 17025 "

1st Lab in the history of Research Wing.

The University of Sydney

The University of Sydney

Page 1.58

Production > 20 mt Due to - Availabilities of good varieties - Good Management Practices (Balance use of fertilizer, availability of irrigation water, weeds control) - Better Government Policies (Subsidized inputs, provision of certified seed, loan & machinery) - Favorable weather conditions (less fogy days, cool nights, favorable temp. at grain fill stage, less lodging & rust attack) - It was all due to the blessing of Almighty Allah

Record Production in Punjab (2016-17)

Page 160

Economic worth of wheat over the year in Punjab

Particular	Production (000) Tons		
2015-16	19527		
2016-17	20466		
Increase over the year 939			
Economic worth (Billion Rs.)			
Wheat Grains	30.52		
• Wheat Bhoosa	7.04		
Total worth: 37.56			
The University of Sydney Page 161			

VISION FOR RESEARCH

- Breeding for Nutrition Enhancement in wheat (Genetic, bio-fortification & value addition) to overcome malnutrition problems
- Development of zone specific wheat varieties suitable for different cropping systems under changed climate scenario (Special focus in rice zone).
- Development of stress resilient wheat varieties (Drought, Terminal Heat Stress, Frost, Salinity and Diseases)
- Development of nutrient efficient varieties and Integrated plant nutrient Management system

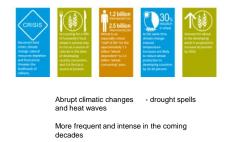
The University of Sydney

Organizational structure/ hierarchy Secretary Agriculture Director General Agri. (Research) **Director Wheat** Faisalabad Murree Asstt. Res. Officers BS-17 Supporting staff BS 14-16 Supporting staff BS-06-13 Specialists BS-18+165 sp Assisstant Specialists BS-18 Supporting staff BS 06-13 20 Supporting staff BS 1-5 8 Asstt. Res. Officers BS-17 Supporting staff BS 1-5 64 18 Page 163

Monday, June 11, 2018 164

Page 164

Poge 162

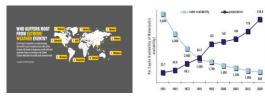

Architecting Self-Irrigating Wheat Through Fog Capturing

Zulfiqar Ali 1960 Professor and Chairman Department of Plant Breeding and Genetics

™ **Monday**, June 11, 2018 166

Page 166

Rationale

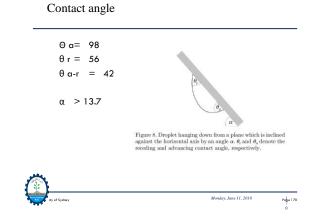


ity of Sydney

Pope 167

Monday, June 11, 2018

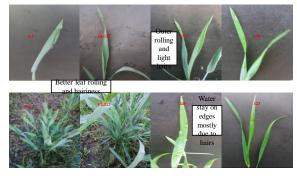
Rationale



Pakistan is 7th most vulnerable country

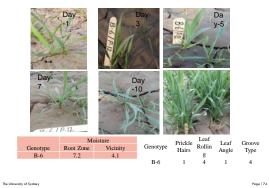
The University of Sydney

Objectives and outcomes


Development of drought and heat tolerant wheat germplasm

- An assembly of novel leaf surface structural traits
 - erect leaves with minimum leaf-to-stem angle
 - leaf rolled longitudinally
 - leaves having prickle hairs
 - grooves running parallel to the long axis of the plan
- Information on morphological and cytological bases of drought and heat tolerance
- Drought and heat tolerant wheat germplasm

Monday, June 11, 2018 Polye 171


Page 169

Page 172

Genotype	Prickle Hairs	Leaf Rolling	Leaf Angle	Groove Type
ZA-1	8	1	1	1
Galaxy-13	7	2	2	2
	Genotype ZA-1 Coloru 12		M	Ioisture % 11.12 8.04

The University of Sydney

The University of Sydney

Page 173

 Moisture

 Genotype
 Root Zone
 Vicinity

 A-1
 5.0
 3.4
 A-1


Page 175

The University of Sydney

Page 176

70

18-01-18

23-01-18

The University of Sydney

The University of Sydney

Page 177

Page 179

The University of Sydney

Page 178

28-01-18

ex HP80a × UJALA-16 # 28 PED=N28 PED:AR-5

Monday, Jucieniniweight = 834.52g 2018

The University of Sydney

The University of Sydney

The University of Sydney

Page 181

Page 183

Acknowledgement

US-PCAS-AFS

PARB

UC Davis

Faculty and students

Monday, June 11, 2018

The University of Sydney

182

Poge 182

Thank you

72

KWS Executive Board

KWS

Dr. Hagen Duenbostel (1970) CEOMember of the Executive Baser since 2003 9. Responsible, Com, Development & Communication, Compliance Degree in Business Administration, Dr. re. pol.

> (1960) Member of the sutive Board since 2014 bility: Sugarbeet, Cereals Marketing

Degree in Agronomy;
 Ph.D. in Seed Physiological Physiology

Member of the
Executive Board since 2007
 Responsibility: Research, Breeding
 Ph.D. in Plant Breeding;
Master of Business Administration

. Léon Br (1960)

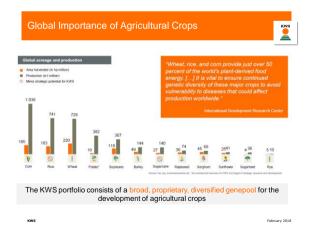
Eva Klenie (1967) • Member of the Executive Board since 2013 • Responsibility: Finance, Law, Procurement, Controlling, IT, IHR, Globa Sponices Investor Relations

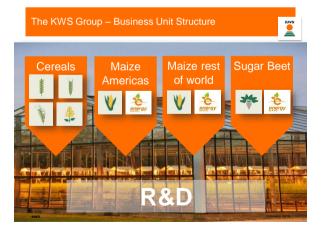
February 2018

KWS

KWS - Quick Financial Summary

al agricultural crop s and hybrid rye	in € million			
	Net sales	1,075.2	1,036.8	+3.7%
/arieties	R&D expenses	190.3	182.5	+4.3%
rong fundamental	EBIT	131.6	112.8	+16.7%
feed) g-term orientation,	EBIT margin (%)	12.2	10.9	
	10-year sales		nt ¹	
Germany 21 %		Ø CAGR 9.8%	nt ¹	_

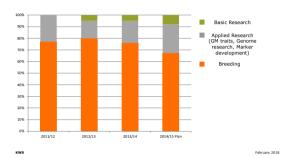

ĸws


Strong market positions market. Market leader in

Diverse gene pool with pr

Strategy and manage enabled by family shi

February 2018



KWS R&D Budget

Percentage of KWS research activities is continiously growing

In 2014/15, 33% of R&D budget was used for basic and applied research

KWS

 Exercise of the KWS crosps the Globble

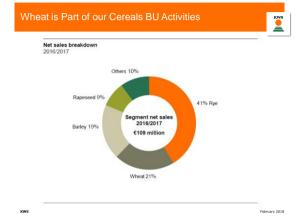

 Exercise of the KWS crosps

 Image: crosps of the KWS crosps

 Image: crosps of the KWS crosps

 Image: crosps

Breeding Wheat – Helping to Feed the World

KWS

Grain-based foods, like those produced with wheat, provide complex carbohydrates, which are the best fuel for our bodies, are low in fat, high in fibre and provide vitamins, especially the 4 key B vitamins, Thiamin, Riboflavin, Niacin, and Folic Acid, as well as iron.

Breads	A Host of non-food production including:
Pasta	Starch Production
Breakfast cereals	Straw particle board (wood)
Biscuits	Paper
Crackers	Milk replacer
Bagels	Hair conditioners
Cakes	Adhesives on postage stamps
Animal Feed	Water-soluble inks
Wheat Distilling	Medical swabs
Thickening agents	Charcoal
Ready-made meals	Biodegradable plastic eating utensils

VERY DIVERSE QUALITY REQUIRING MARKETS

KWS

February 2018

Overview of General Breeding Objectives for KWS KWS Yield Quality Resistance Sugar/energy/grain yield Food, processing, fodder To diseases (e.g. fungi), to pests (e.g. insects) and Nutrient use efficiency Agronomic properties Energy Nitrogen, Phosphate Hardiness, monogerm varieties, bolting resistance Biomass/biogas yield, oil/starch/sugar yield

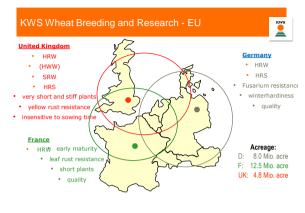
Yield potential	2. Resistance	3. Quality
and stability	to diseases	characteristics
Grain yield Winter hardiness Resistance to lodging Plant density Spike density Seeds per spike	 Stalk breakage Take-all Mildew Yellow rust Wheat leaf rust Septoria leaf blotch DTR Tan spot 	Milling quality • Ash content • Flour yield • Grain hardness Ethanol quality • Starch content • Ethanol yield
Thousand seed weight With the exception of winter-hard abiotic stresses do not yet play a r role in our breeding targets		Baking quality Protein content Sedimentation value Falling number Water absorption Pastry quality Baking volume

ĸws

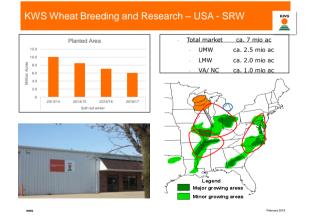
February 2018

76

Key Breeding Drivers at KWS


- Access to excellent (proprietary) breeding material
 Genetic resources / Genetic variability
- Focus on time to market

- Use of modern breeding technologies
 Breeding methods (DH, GS, ..)
 Phenolyping (Breeders eye, sensors, ...)
 Genomics and biotechnology (incl. traits)
- Efficient organization
 Excellent employees
 Efficient (breeding processes)
 - Integrated approach
- Innovation driven through research cooperation
- Strong link to market
 - Focus on quality
 Appropriate variety protection


KWS

February 2018

External Collaboration – KWS

- · KWS has many collaborations with third party organisations
 - Universities

KWS

- Research Institutes
- Technology & Trait providers
- Competitors (Pre-competitive R&D)
- A major theme for KWS has always been this 'collaborative' approach, with Germplasm Exchange and the value of the 'Breeder's Exemption' in PVR as cornerstones of how we work

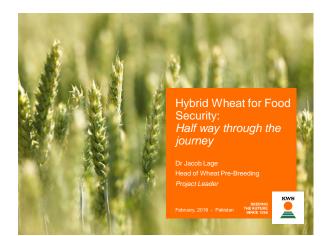
KWS

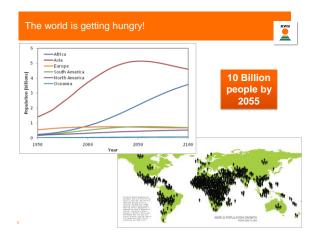
February 2018

KWS

February 2018

- KWS interacts with many in R&D activities in wheat and values working with partners who are open-minded and genuinely value collaboration
- In Wheat we provide not only funding and in-kind contributions to research projects, we also provide staff to act on advisory boards and committees for many organisations
 - Government Departments, Research Funders, Universities etc.
 Global International Projects (WI, IWYP etc.)




External Collaboration – Hybrid Wheat

 It is as part of our collaboration activities that we have become involved in the UK Government funded project on Hybrid Wheat that brings us to Pakistan today,

which is partly funded by the Department for Internationable Development [DFID]

ĸws

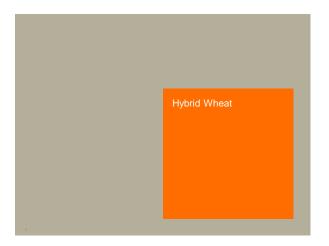
Norman Darvey 1945-2017

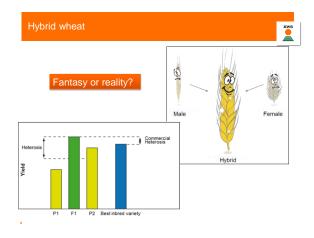
the talk, but we also need to walk the walk; deliver matter, addressing global food needs"

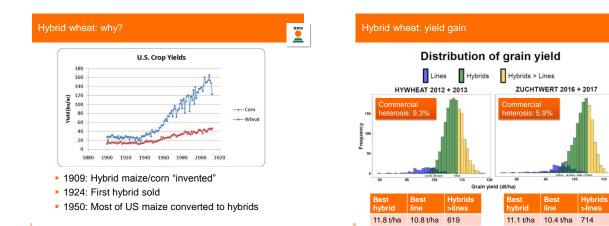
Hybrid wheat for food security – UK-funded project

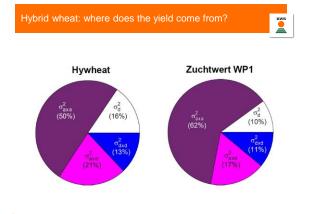
- Norman Darvey had a vision and an alternative hybrid wheat system
- Global group of partners
 Norman Darvey
 - Universities of Agriculture Faisalabad & Multan
 - University of Sydney
 - KWS
- UK funding provided by the Department for International Development
- 5-year project

Kick-off meeting, Australia Oct 2015


KWS


Hybrid wheat for food security – objectives


- Develop hybrids for testing in Pakistan, Australia and Europe
 - Sydney, Prof. Richard Trethowan
 - UK, Nick Bird
- Improve Norman's hybrid system
 Cytogeneticist Peng Zhong
- Exploit heterosis in Australian and Pakistani germplasm
- Prof. Zulfiqar Ali and Mr Ishan Karim



Project meeting, Australia Oct 2016

Hybrid wheat: where to find heterosis and yield stability

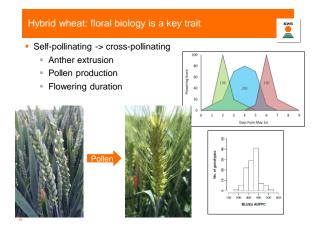
♀ Females; ♂ males; ★ trial sites

KWS

150

Hybrid wheat: many benefits

- Money!
 - Increased revenue for all
 - Possibly to move into regions currently determined as "unprofitable"
- Increasing yield
 - High yield potential areas: ~10%
 - Marginal environments: 15-25%
- Yield stability
 - Some anecdotal evidence that hybrid wheat has increased yield stability
 - Possibly more important than yield


KWS

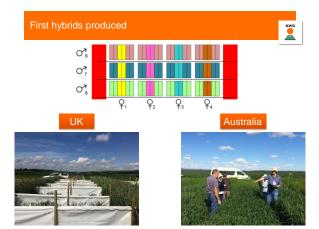
Hybrid wheat: how to make wheat sterile?

- Chemical hybridisation agents (CHA)
- Genetic engineered nuclear-encoded systems
- Biological, native trait, systems
 - Cytoplasmic male sterility (CMS)
 - Triticum timopheevii
 - Aegilops kotschyi
 - Nuclear male sterility (NMS)
 - *m*s1
 - Environment sensitive genetic male sterility

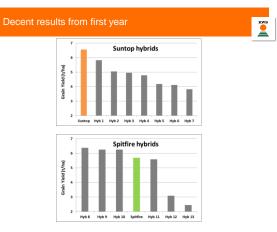
кws

The beginning

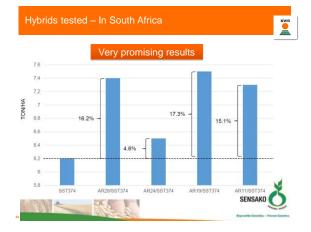
It all started in Norman's back garden


Scaling up

The work moved to University of Sydney's breeding station in Narrabri


Mr Ishan Karim from University of Agriculture Faisalabad moved there for one year

KWS



KWS

Even made a visit to India

Indian Agricultural Research Institute (IARI) is a collaborator on project and will test hybrids in 2019

KWS

"If you never fail, then you are not trying hard enough'

Pakistan

- Multi-location yield trials with Pakistani hybrids
- Quality test of hybrids
- Production of new hybrids and initiate hybrid breeding
- Australia
 - Multi-location yield trials
 - Further improvement of hybrid system
- UK
 - Multi-location yield trials with hybrids based on KWS parents
- India
 - Multi-location yield trials with hybrids based on Indian parents

KWS

"We should all feel blessed by the privilege of working together in peaceful environments so that we can contribute to food production in the poor and hungry nations on earth"

Molecular marker resources

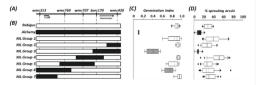
- KWS' genotyping facility is based in Einbeck, Germany and handles samples from all KWS crops.
- The genotyping facility process approximately:
 - 55,000 wheat DNA extractions
 - 25,000 wheat samples run on arrays, predominantly for genomic selection
 - 50,000 Wheat KASP datapoints for MAS and research projects.

KWS access all public resources for wheat genotyping

- 9K Wheat Array (Illumina)
- Wheat iSelect Array (Wang et al.)
- Wheat 820K Array (Affymetrix)
- 35K Wheat breeders array (Affymetrix)
- 35K breedwheat Array (Affymetrix)

N BIRD KWS UK R&D

11/06/2018

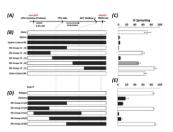

Trait mapping to marker deployment

- For a specific loci the long term use of arrays is not cost effective.
- The faster the trait can be mapped and tracked using KASP markers the better.
- KWS Wheat pre-breeding in conjunction with the Biotechnology team employ a traditional approach to QTL mapping and gene cloning.
- Segregating populations are assessed phenotypically and lines are genotyped.
- Traditional QTL mapping conducted to determine region of interest.
- Depending on size of region further recombinant mapping maybe warranted.
- Recombinants in the QTL region are identified from the population and only these lines are phenotyped.
- Phenotypes and further genotyping of critical recombinants determine gene position.
- If sufficiently close enough, cloning by sequencing and / or candidate gene testing identifies the gene of interest.

N BIRD KWS UK R&D

Trait mapping to marker deployment

- Robigus x Alchemy population identified as having differential phenotypes in pre-harvest sprouting
- Traditional QTL mapping was done on a DH population identifying chromosome 4A
- · NILs across the identified region were made for QTL validation


N BIRD KWS UK R&D

Trait mapping to marker deployment

ĸws

KWS

Recombinants in the region identified from 2 populations. Further genotyping and phenotyping narrowed region allowing candidate genes to be identified

TaMKK-3 identified as causative gene via functional gene analysis

WAGTAIL

- Wheat Association Genetics for Trait Analysis and Improved Lineages.
- BBSRC funded project with NIAB and multiple commercial companies.
- Project started 2011 and ended in 2016.
- Project aims
 - Genetically fingerprint 480 predominantly UK winter wheat varieties.
 - Phenotype for the 5 major fungal disease in wheat.
 - Use genetics and disease scores to pinpoint sources of genetic resistance.
 - Confirm these sources of resistance in independent populations.

Yellow rust population changes

- 2013 saw massive shift in the UK yellow rust population.
- New race named the warrior race.
- In the following years yet more changes have occurred.
- Many efforts in trying to explain what has happened and managing the current situation are on going.

N BIRD KWS UK R&D

11/06/2018

Results – Yellow Rust

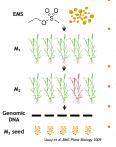
- 12 resistance loci for yellow rust identified and validated post warrior race.
- No current variety has all 12 resistance loci.
- To date no information on which gene(s) is most effective.
- How are we using this information?
 - Number of resistance loci per variety information passed to breeders.
 - Maximum Yellow rust genetic performance per cross can be predicted.

N BIRD KWS UK R&D

																											-	_	-
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
5	Parent YR loci	5	5	6	8	2	4	5	2	5	6	2	4	5	5	4	6	4	7	6	3	8	8	4	5	2	5	7	5
1	5	х	10	9	12	7	7	7	7	9	9	7	7	7	7	6	7	7	7	10	х	10	10	8	10	7	7	9	5
2	5	10	х	7	8	х	9	10	7	8	9	х	7	8	8	9	9	7	12	6	8	8	8	6	х	х	8	10	
3	6	9	7	х	10	7	8	9	8	10	9	7	7	8	8	8	9	9	11	8	7	8	8	7	7	7	8	10	1
4	8	12	х	10	х	х	10	10	х	х	10	х	10	10	10	10	12	10	12	х	10	10	10	х	х	х	10	10	
5	2	7	5	7	8	х	6	7	-4	5	6	х	4	5	5	6	6	4	9	6	5	8	8	6	5	х	5	7	
6	4	7	9	8	10	6	х	5	х	7	6	6	6	7	7	5	8	8	7	10	5	10	10	8	9	6	7	7	
7	5	7	10	9	10	7	х	х	х	7	7	7	7	7	7	х	9	9	7	10	х	10	10	8	10	7	7	7	
8	2	7	7	8	8	4	4	5	х	5	6	-4	6	7	7	5	8	6	7	8	5	10	10	6	7	4	7	7	
9	5	9	8	10	8	х	7	7	х	х	7	х	7	7	7	7	9	7	9	8	7	10	10	8	8	х	7	7	
0	6	9	9	9	10	х	х	7	х	7	х	х	х	7	7	7	8	8	9	10	7	10	10	10	9	х	7	7	
11	2	7	5	7	8	х	6	7	-4	5	6	х	-4	5	5	6	6	4	9	6	5	8	8	6	5	х	5	7	
12	4	7	7	7	10	х	6	7	6	7	6	х	х	5	5	6	6	6	9	8	5	8	8	8	7	х	5	7	
13	5	7	8	8	10	х	7	7	7	7	7	х	х	х	х	6	7	7	9	8	х	8	8	8	8	х	х	7	
14	5	7	8	8	10	х	7	7	7	7	7	х	х	х	х	6	7	7	9	8	х	8	8	8	8	х	х	7	
15	4	6	9	8	10	6	5	5	5	7	7	6	6	6	6	х	8	8	7	9	х	9	9	7	9	6	6	7	
16	6	7	9	9	12	х	8	9	8	9	8	х	х	7	7	8	х	х	9	10	7	10	10	10	9	х	7	9	
7	4	7	7	9	10	х	8	9	6	7	8	х	6	7	7	8	6	х	9	8	7	10	10	8	7	х	7	9	
18	7	х	12	11	12	9	х	х	х	9	9	9	9	9	9	х	9	9	х	12	х	12	12	10	12	9	9	9	
19	6	10	х	8	8	х	10	10	8	8	10	х	8	8	8	9	10	8	12	х	8	8	8	х	х	x	8	10	
20	3	5	8	7	10	5	5	5	5	7	7	5	5	5	5	4	7	7	7	8	х	8	8	6	8	5	5	7	
21	8	10	Х	х	10	х	10	10	10	10	10	Х	х	х	х	9	10	10	12	х	х	х	х	х	х	х	х	10	
2	8	10	X	х	10	X	10	10	10	10	10	х	x	X	X	9	10	10	12	х	X	х	х	x	х	х	х	10	
23	4	8	6	7	8	6	8	8	6	8	10	6	8	8	8	7	10	8	10	6	6	8	8	х	6	6	8	10	
24	5	10	х	7	8	х	9	10	7	8	9	х	7	8	8	9	9	7	12	6	8	8	8	6	х	х	8	10	
15	2	7	5	7	8	х	6	7	4	5	6	х	4	5	5	6	6	4	9	6	5	8	8	6	5	х	5	7	
26	5	7	8	8	10	x	7	7	7	7	7	х	x	x	x	6	7	7	9	8	х	8	8	8	8	х	×	7	
27	7	9	10	10	10	x	х	x	x	х	х	х	х	х	х	x	9	9	9	10	х	10	10	10	10	х	x	х	
28	5	9	8	10	8	х	7	7	х	х	7	х	7	7	7	7	9	7	9	8	7	10	10	8	8	х	7	7	
N	BIRD KWS UK F	t&D																									11	/06/20	18

ĸws

N BIRD KWS UK R&D


Maximising yellow rust genetic resistance

- This new genetic data is being used now.
- Profiling current lines in National testing.
- Designing the next set of crosses to be made as part of the breeding process.
- · Contributing to decisions on acceleration of lines through the breeding process.
- · All this information whilst being used currently in in-bred lines can and will form part of the breeding strategies for hybrid wheat.

Introducing novel allelic variation – The pipeline

N BIRD KWS UK R&D

- EMS mutagenesis introduces base pair substitutions leading to new alleles
- Exome capture and sequencing of M2 DNA identifies these base changes and can predict the effect on gene.
- 1200 mutated lines have been selfed to M4 families.
- The population has 6.4 million mutations in its exome.
- 70,000 predicted genes will have non-functional alleles
- Cadenza mutants being utilised in wheat pre-breeding program and multiple projects involving KWS

11/06/2018

N BIRD KWS UK R&D

Introducing novel allelic variation - The pipeline

- Using Blast you can search for your gene(s) of interest.
- 10,000,000 mutant alleles across both tetraploid and hexaploid populations.
- Identify the most appropriate mutation (premature stop, splice site variant, etc).

kws

11/06/2018

WWW.Wheat-tilling.	.com
John Innes Cent Wheat TILLING Weight Wards Tarrier Industry	Martin India
This resource consists of TILING populations developed in tetrapioid durums	where or Wornes' and hexaploid brasel where or Cademar' as part of a joint project between the University
of California Davis, Rothamsond Research, The Earthern Institute, and John Inno We have re-sequenced the exores of 1,535 Kronos and 1,200 Cadensa musters chromosome arm survey sequence, identified mutations, and predicted their	ts using Burnina next-generation sequencing, aligned this new data to the WESC Chinese Spring
Search TILLING data	BLAST Scatfold
Population O Cadencia O Knonos #Bodh Tupe in Sitt of search terms (conflicts, line or gene)	1
Search the detailable by: pens (eq. Trans 1AL MELIARTIC: Trans 1AL MELIARTIC, musfield (eq. TMON_COS_1AX_ment_6)49779; IAL_6947 mutant line (eq. Catemat250)	
	1.1

<section-header><section-header><image><image><image>

Introducing allelic variation – The pipeline

Backcrossing scheme to KWS Variety

- Using Blast you can search for your gene(s) of interest.
- 10,000,000 mutant alleles across both tetraploid and hexaploid populations.
- Identify the most appropriate mutation (premature stop, splice site variant, etc).
- 100,000 mutations will cause truncations (premature stop, splice site variant).
- Order these mutants (£250 each with FTO, £25 research only).
- Design KASP marker to track mutation using Polymarker (www.polymarker.tgac.ac.uk).
- Many targets need to be in homozygous null state in all 3 genomes for maximum (or sometimes any) effect to be seen.
- KWS have approximately 20 mutants in back crossing program at any one time.

11/06/2018

N BIRD KWS UK R&D

Summary

N BIRD KWS UK R&D

- KWS has a large genotyping facility which processes in excess of half a million samples a year.
- Approximately 10% of these samples are for the global wheat programs,
- Cost effective use of genotyping is essential to breeding programs.
- KWS are heavily involved in trait mapping and efficient usage of these traits in breeding programs.
- The UK wheat community collaborates closely in many projects to achieve more than any individual can.
- Effective utilisation of outputs from projects is essential to ensure progress.
- Public resources like the tilling libraries are opening up new, faster methods of genetic gain for public and commercial organisations.

N BIRD KWS UK R&D

91

kws

STATUS OF WHEAT , CHALLENGES AND PROSPECTS OF WHEAT CULTIVATION IN PUNJAB/PAKISTAN

Dr. Makhdoom Hussain makhdoomhussain@yahoo.com

AREA, PRODUCTION & YIELD OF WHEAT IN TOP 10 WHEAT PRODUCING COUNTRIES (2016-17

Area (000) ha	Production (000) Tons	Yield Tons/ha
India (30600)	China (130000)	China (5.37)
Russia (28600)	India (98380)	Ukraine (4.02)
China (24200)	Russia (82000)	India (3.22)
USA (15211)	USA (47371)	USA (3.11)
Australia (12500)	Canada (27000)	Russia(3.06)
Pakistan (9050)	Ukraine (26500)	Canada (3.00)
Canada (9000)	Pakistan (26200)	Pakistan (2.90)
Turkey (7800)	Australia (21500)	Turkey (2.69)
Iran (6800)	Turkey (21000)	Iran (2.21)
Ukraine (6600)	Iran (15000)	Australia (1.72)

Global Wheat Scenario

Global Production

742 mt > 26 mt

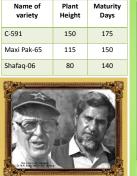
- Pak Production Punjab Production
- > 20 mt
- Pakistan
- 7th Wheat Producer

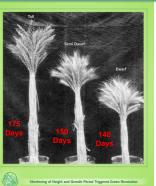
WHEAT YIELD INCREASE OVER THE YEARS IN PUNJAB - PAKISTAN

Year	Yield Kg/ha (Punjab)	Yield Kg/ha (Pakistan)					
2014-15	2763	2726					
2015-16	2817(2%)	2753(1%)					
2016-17 3014(9%) 2900(6%)							
Global wheat production during the current year is 742 million tons as compared to last year 754 million tons (- 1.62%)							

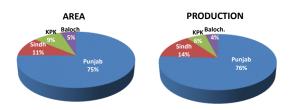
WHEAT: PROJECTED REQUIREMENTS PAKISTAN								
Year	Requirement (m. tones)	Av. Yield (tones/ha)						
2020	28.8	3.2						
2025	31.4	3.5						
2030	34.3	3.8						

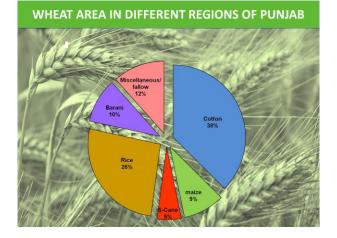
It includes human consumption (120 Kg / person with population growth of 1.8% per annum), feed and seed (10% of production), food security reserve (1.0 million tones)

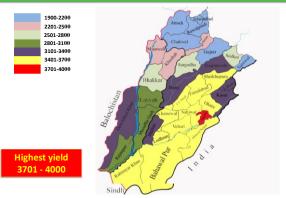

HISTORY OF GREEN REVOLUTION


Pakistan 1965-66 Mexico 1966-67 India 1967-68

 It was a young Pakistani researcher (Dr. Manzoor Ahmad Bajwa) who, in 1961, selected the cross that later became known as MexiPak; a high yielding, white grain wheat that became one of the mega-varieties that

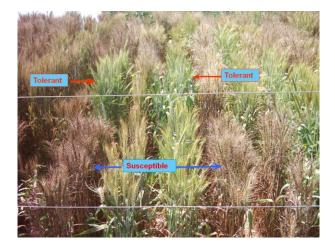



SHORTENING OF HEIGHT AND GROWTH PERIOD TRIGGERED GREEN REVOLUTION

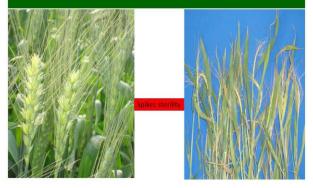


Provincial Share in Area and Production of Wheat

2016-17 (kg/hectare)


ISSUES/ CHALLENGES

•Climate change scenario

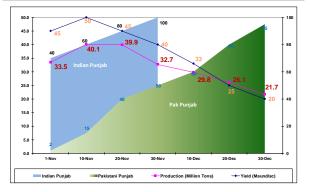

- •Drought (especially erratic rains in barani tract) rains, winds and hail storms at the time of harvesting
- Frost stress
- Terminal Heat Stress (Global warming)
- 0.5°C increase in temperature reduce wheat yield by 0.45 Tons/ha. •Late wheat Planting
- 17-20 kg/acre/day losses or 1% loss per day Change in planting time
- •Diseases especially rusts Up-to 70% loss Change in appearance of rusts. (Lr - Yr - Lr) Bunts
 - .
- Wheat Blast Apparently not found in Pakistan Soil health, fertilizer (cost, availability & imbalanced use)
 - Imbalanced Fertilizer = 30-55% Low organic matter = < 1%
- Insect/pest especially Aphid Up-to 40% loss

•Weeds

- Up-to 40% losses , resistance in weeds against weedicides • Seed 20-25 % replacement annually
- Small holdings (80%) and Urbanization

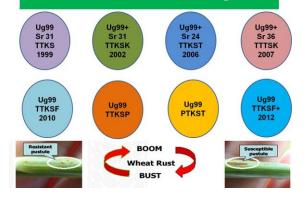
Frost stress

Frost stress



Frost (Intensity & effect)

SOWING DATE PATTERN AND ITS IMPACT ON WHEAT PRODUCTION IN PUNJAB



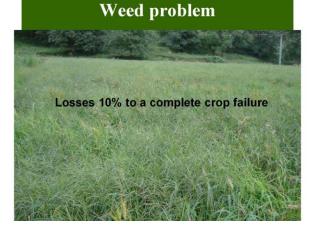
Wheat Diseases (Rusts)

Brown rust

MUTATION IN RACE Ug-99

Wheat Blast Devastation

Bangladesh - 2016


India - 2017

Aphid (Coccinella spp)

Problem Soils

2.70 million hectares (Punjab) 6.68 million hectares (Pakistan)

Strategies to overcome effects of climate change

- Breeding strategies:
 - Breeding of heat, drought and frost tolerant varieties
 - Short duration wheat varieties
 - Physiological breeding using modern gadgets
 - Canopy temperature
 - Flag leaf stomatal conductance
 - Photosynthetic rate
 - Greenness
 - Electrolyte leakage (Cell membrane thermo-stability)
 - Use of molecular tools for efficient selection

Screening Against Heat

Strategies to overcome effects of climate change

Management strategies

- Change in cropping pattern
 - Include Pulses in rotation e.g. Wheat-Mung-Rice, etc.
 - Resource conservation.
 - Wheat planting in standing cotton.
 - Bed sowing to save water and to reduce lodging.
 - Zero till and direct seeded rice.
 - Sowing of wheat at proper time.
 - Application of Zinc to improve enzymatic reaction in plants.

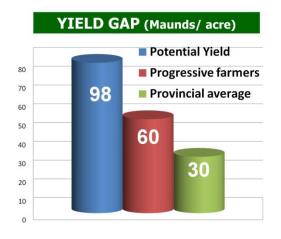
Wheat In Standing Cotton

- No land preparation
- Cost saving
- Timely crop planting
- · Builds soil organic matter
- Reduces compaction
- Improves yield
- Environment friendly

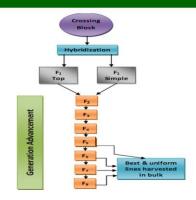
Zero Till Planting

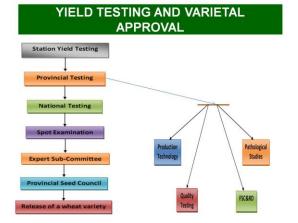
- No land preparation
- Cost saving
- Timely crop planting
- · Builds soil organic matter
- Reduces compaction
- Improves yield
- Environment friendly

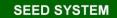
Research Institutes Working on Wheat

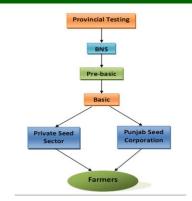

- WRI, Faisalabad
- RARI, Bahawalpur
- BARI, Chakwal
- AZRI, Bhakkar
- · Biotechnology, Faisalabad

Research Disciplines


- Breeding
- Pathology
- Entomology
- Agronomy
- Quality
- · Biotechnology
- Seed production
- Shuttle Breeding:
 - Kenya
 - Kaghan
 - Murree


68





VARIETY DEVELOPMENT PROCEDURE

Need for Quality Evaluation

National and International compulsions

Wheat variety development program

- Quick and reliable quality assessment
- Evolution of wheat varieties with good quality traits
- Resistant varieties
- Nutrient rich varieties

Wheat and milling tests

- Moisture Content
- Ash Content
- Protein Content
- Thousand Kernel Weight
- Starch
- Gluten
- Sedimentation
- Single Kernel Characterization System (SKCS

Flour and dough tests

- Falling Number
- Flour Color Analysis
- Farinograph
- Extensograph
- Glutomatic
- Fermentograph

Capacity Building

Trainings imparted

- Training on Wheat Breeding/ Production Technology to:
 - Master trainers of Extension Wing
 - Scientists from other provinces
 - Farmers
- Rust Identification to:
 - Extension wing of Agriculture
 - Pest Warning and quality control
- Guidance/practical training to University students:
 - Internship programme
 - Post-graduate & Ph.D. research

Trainings conducted by Wheat Research Institute, Faisalabad

Capacity Building							
Foreign Trainings Received							
 Dr. Javed Ahmad 	Kenya, USA, Mexico						
– Dr. G.M. Subhani	Ethiopia, UK, Turkey						
 Faqir Muhammad 	Nepal						
- Dr. M. Abrar	Singapore						
 Anjam Javed 	Singapore						
 Nadeem Ahmad 	USA, Mexico, Kenya						
 Muhammad Hussain 	USA						
 Faqir Muhammad 	Mexico						
- Dr. M. Akbar	Mexico						
 Javed Anwar 	Syria						
 Sabina Asghar 	Nepal, USA, Mexico						
 Muhammad Zulkiffal 	Mexico						
 Huma Safdar 	USA						
 Rabia Sultan 	USA						
 Dr. Makhdoom Hussain 	USA, Russia, Nepal, Mexico, Syria, Turkey, Australia, Kenya						

Visit of international scientists

CIMMYT	Dr Micheal Jones	Australia
CIMMYT	Dr Hans Braun	CIMMYT
СІММҮТ	Dr David Marshall	CIMMYT
ICARDA	Dr Xian Ming	USDA, USA
ICARDA	Dr K.D. Joshi	CIMMYT
ICARDA	Dr Abdul Rahman Bashir	CIMMYT
ICARDA	Dr Upali Samarajeewa	Sri Linka
Australia	Dr L. G. Wigemark	EU
USA	Dr Anne Mackanze	FAO
СІММҮТ	Dr I. W. Borne	USDA
	Dr Kulvender Singh	UC DAVIS
	CIMMYT ICARDA ICARDA ICARDA ICARDA Australia USA	CIMMYT Dr David Marshall ICARDA Dr Xian Ming ICARDA Dr K.D. Joshi ICARDA Dr Abdul Rahman Bashir ICARDA Dr Upali Samarajeewa Australia Dr L. G. Wigemark USA Dr Anne Mackanze CIMMYT Dr I. W. Borne

Training of WRI Staff by Foreign scientists

Farmer interaction

Farmer's days arranged by WRI at farmers fields

Farmer's days arranged by WRI

Farmer Days

Seed Distribution

Demonstration on farmers fields

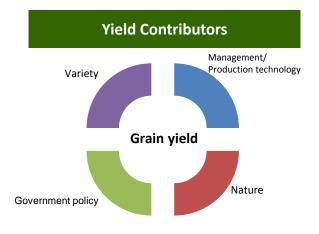
100th Birthday celebrations of Dr. Norman Borlaug

100th Birthday celebrations of Dr. Norman Borlaug

Achievements of AARI in 2016-17

Six wheat varieties released

- Ujala-16 Johar-16 Gold-16
- Ihsan-16 Fatehjang-16 Anaj-17


Two Barley Varieties

- Jau-17 Sultan-17
- Advance line (V-12066) found resistant to all 3 rusts on the basis of two year studies by CDRI, Islamabad.
- Advance line (V-14154) performed excellent on Pakistan basis with yield of 4329 kg/ha and was on top position with yield of 4266 kg/ha on Punjab basis in NUWYT 2016-17.
- Wheat line (V-14124) attained top position in PUWYT 2016-17 producing 4360 kg/ha.

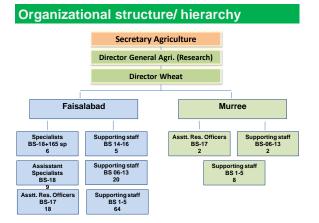
Achievements of AARI in 2016-17

Six w Cereal Technology Laboratory got accredited " ISO – 17025 "

1st Lab in the history of Research Wing.

Record Production in Punjab (2016-17)

Production > 20 mt


- Due to
 - Availabilities of good varieties
 - Good Management Practices
 - (Balance use of fertilizer, availability of irrigation water, weeds control) - Better Government Policies
 - (Subsidized inputs, provision of certified seed, loan & machinery) Favorable weather conditions
 - (less fogy days, cool nights, favorable temp. at grain fill stage, less lodging & rust attack)
 - It was all due to the blessing of Almighty Allah

Economic worth of wheat over the year in Punjab

Particular	Production (000) Tons					
2015-16	19527					
2016-17	20466					
Increase over the year	939					
Economic worth (Billion Rs.)						
Wheat Grains	30.52					
Wheat Bhoosa	7.04					
Total worth:	37.56					

VISION FOR RESEARCH

- Breeding for Nutrition Enhancement in wheat (Genetic, bio-fortification & value addition) to overcome malnutrition problems
- Development of zone specific wheat varieties suitable for different cropping systems under changed climate scenario (Special focus in rice zone).
- Development of stress resilient wheat varieties (Drought, Terminal Heat Stress, Frost, Salinity and Diseases)
- Development of nutrient efficient varieties and Integrated plant nutrient Management system

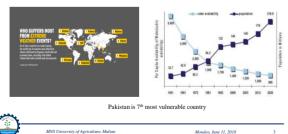
MNS University of Agriculture, Multan

Architecting Self-Irrigating Wheat Through Fog Capturing

Zulfiqar Ali PRD Professor and Chairman Department of Plant Breeding and Genetics Monday, June 11, 2018

MNS University of Agriculture, Multan

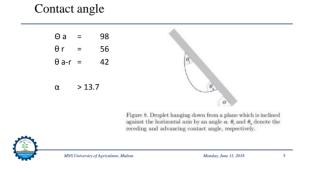
Rationale

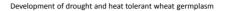

Abrupt climatic changes - drought spells and heat waves

More frequent and intense in the coming decades MNS University of Agriculture, Multan

Monday, June 11, 2018

2


Rationale


MNS University of Agriculture, Multar

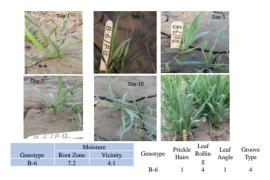
Monday, June 11, 2018

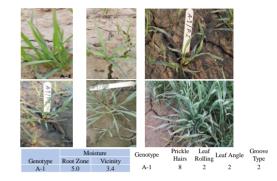
Objectives and outcomes

- An assembly of novel leaf surface structural traits
 erect leaves with minimum leaf-to-stem angle
 leaf rolled longitudinally
 leaves having prickle hairs
 grooves running parallel to the long axis of the plan
- Information on morphological and cytological bases of drought and heat tolerance

• Drought and heat tolerant wheat germplasm

MNS University of Agriculture, Multan




6

ZA-1	8	1	1	1	
Galaxy-13	7	2	2	2	
Genotyp	e		Moisture %		
ZA-1			11.12		
Galaxy-1	3			8.04	

Chakwal-86

18-01-18

23-01-18

28-01-18

28 PED=N28 PED:AR-5 ex HP80a × UJALA-16

• Grain weight = 834.52g

6/11/2018

Acknowledgement

US-PCAS-AFS

PARB

UC Davis

Faculty and students

6/11/2018

Thank you

Legumes for Sustainable Agriculture

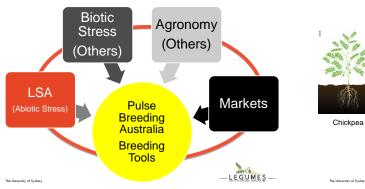
- A National Research HUB focused on improving grain legume productivity and agricultural sustainability
- Capture diverse and complimentary plant-based skills for Grain Legume Focus
 - Plant Physiology
 - Biochemistry and Molecular Biology
 - Symbiotic biology and soil interactions
 - Genetics and Pre-breeding
- Identify new traits that improve legume productivity in Australia • Pre-breeding pipelines to translate discoveries for use by breeders
- Compliment existing legume research streams in Australia

The University of Sydney

Partnerships and Investors

NC STATE

GRDC


NSW

The University of Sydney

- ARC, GRDC
- Universities (7)
- State-based agencies (2)
- Wheat Research Foundation
- ~\$14.5 million (cash and in-kind) - 5 year research program

Poge 4


Complementary R&D within Australia

LSA Research Aims

- Develop grain legumes for increased resilience to abiotic stress.
 - Optimize plant resource partitioning to enhance the efficiency of yield production under stress.

Enhance $N_2\mbox{-}{\rm fixation}$ of grain legumes for annual and rotational crop production.

Genetic diversity in Australian chickpea is low

There is relatively little genetic variation in Australian cultivars relative to other crops.

- The industry is relatively new
- Many cultivars share a parent
- The chickpea gene pool is narrow

The University of Sydney

Poge 8

Chickpea domestication (Abbo et al. 2003)

- Chickpeas were domesticated as a spring-sown crop (Mediterranean) due to high susceptibility to Ascochyta
- With improved Ascochyta resistance and a wider range of growth environments (including many with conditions less conducive to Ascochyta) it has reverted to an autumn sown crop in most places (except Europe)
- This had consequences on the vernalisation, light intensity and phenological requirements of the crop
- Wild relatives hold significant diversity compared to cultivated forms, and significant room for improvement

Chickpea temperature response

 $\mathsf{Extremes} o \mathsf{reproductive tissue damage} o \mathsf{low yields}$

- Flower sterility
- Pod abortion
- [Economic losses due to heat stress marks on grain]

Low or high temps \rightarrow phenological/growth rate changes \rightarrow low yields

- Delay in flowering/podset (heat stress during pod fill)
 Early onset podding (frost risk during pod fill)

The University of Sydney

Page 9

The University of Sydney

Page 10

BREEDING STRATEGIES for HEAT STRESS TOLERANCE

BREEDING STRATEGIES (cont.)

Breed for earlier podding (heat avoidance)		Import new lines • ICRISAT • Giobal Hot Spots • Other researchers • Aus. Gene Bank	
Improve podfilling under high temperatures (heat tolerance)	Page 11	The liderenty of Syday	Why are they heat tolerant? Growth chambers Mapping the genes Aerial imagary etc

Field-based heat tolerance/avoidance screening

- Normal NW NSW sowing time (late May) = TOS1
- Delayed sowing to cause heat stress during pod filling (late July) = TOS2
- Control for optimum nutrition, non-limiting water availability, minimal disease
- Quantify growth rate, yield, grain size

The University of Sydney

Page 13

Selecting for yield under heat

- Limit to yield is podding date, not flowering date, amongst Aus. Cultivars
- Can we improve yield by bringing forward podding date?
- Can we improve yield by breeding for heat tolerance in plants during podfill?

The University of Sydney

Poge 14

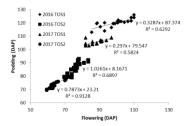
AIMS

Part 1 – Investigation of early phenology (for heat avoidance) Part 2 – Investigation of yield under delayed sowing (for heat tolerance)

Part 1. Phenology and temperature stress

- Flower-pod interval in commercial farms can be up to a month
- Data from TOS 1 = average 21 days or 19 days 2016 or 2017
- Farmers report the need of a 'heat kick' to flower or pod
- Is this GDD, plant response to a 'kick', daily temps reaching a high enough level, or something else?

When late sown (assuming no extreme temp to prevent podding), flower-pod interval is typically 11 days


The University of Sydney

Page 15

The University of Sydney

Page 16

Relationship between flowering and podding

Phenology + Growing Degree Days

	Flowering		Pod	ding
	TOS1	TOS2	TOS1	TOS2
2016	999	892	1374	1044
2017	940	729	1167	921

Accumulated GDD up to the commencement of flowering and podding for the earliest genotypes in each treatment

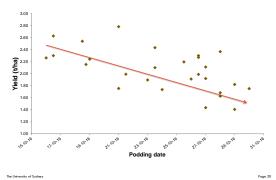
The University of Sydney

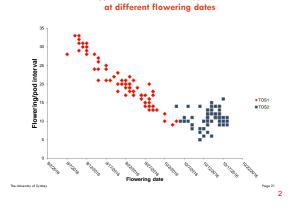
Page 17

Page 19

The University of Sydney

Poge 18


Phenology + Light intensity


	Flowering		Podding	
	TOS1	TOS2	TOS1	TOS2
2016	410	424	602	525
2017	401	421	579	479

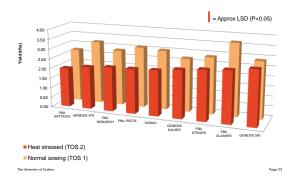
Accumulated Photosynthetically-Active Radiation (PAR, in MJ m⁻²) up to the commencement of flowering and podding for the earliest genotypes in each treatment

The University of Sydney

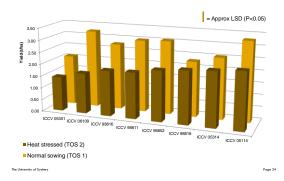
Will early podding help in an Australian Environment?

Genotypic variation in flower/pod interval

Part 2. Yield under heat stress


Considering heat tolerance, two ways to look at results:

- Yield loss (genetic potential)
- Physiological basis of high/poor yield when heat stressed (trait identification)


The University of Sydney

Poge 22

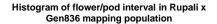
Genotype yield responses to sowing date (Australian varieties)

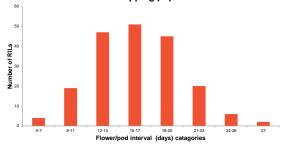
Genotype yield responses to sowing date (introduced materials)

Mapping the genes for heat tolerance

 Sonali x PBA Slasher
 (early podding x heat/drought tolerant)

 ICCV 06302 x Genesis 079
 (heat tolerant x drought tolerant)


 Rupali x Genesis 386
 (early podding x normal podding) [from ACPFG]


Currently under seed increase for 2018 experiments

The University of Sydney

Page 25

The University of Sydney

Poge 26

Acknowledgements: Angela Pattison & Helen Bramley

The University of Sydney

Poge 27

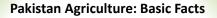
PAKISTAN AGRICULTURAL RESEARCH COUNCIL

Pulses in Pakistan Challenges & Prospects

International seminar on Pulses and Wheat for Food Security 25-02-2018 MNS University of Agriculture, Multan

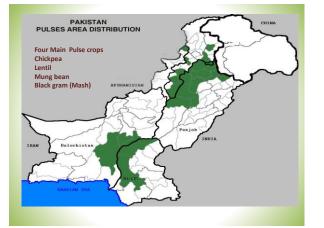
> Dr. Shahid Riaz Malik Program Leader, Pulses Research National Agricultural Research Center Islamabad

Pulses: Powerful Super food

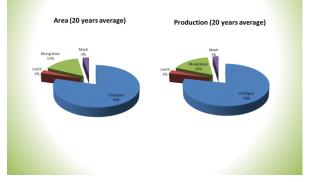

Other benefits

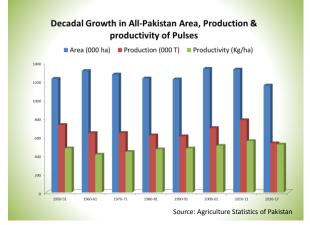
- Foster Sustainable Agriculture and soil Protection
- Nitrogen Fixing properties
- Highly Water Efficient
- Ally against climate change

 Broad genetic diversity
 - Smaller Carbon footprints
- Economically accessible and multipurpose
 - Can be cultivated in poor soils and semiarid environments
 - Farmers can produce for eating and/or selling
 - Crop residues/straw as animal fodder


- Total cropped area : 22.51 m ha
- Pulses
 - : 12.603 m ha (56%)
- Cash crops

Cereals


: 4.343 m ha (19%) : 0.694 m ha (3%)


: 1.13 m ha (5%)

- Edible oilseeds
- Pulses-cereals ratio : 1:8.5
- Pulses Per capita availability : 6.5 kg/annum

Percentage Share of Four Major Pulses

Consumption Production Comparison (2015-16)

		Quantity in '000' tonnes				
Сгор	Consumption	Production	Import	Import Dependency (%)		
Chickpea	550	286	264	48		
Mung Bean	160	102	58	36		
Lentil	113	7	106	94		
Mash	69	9	60	87		
Total	892	404	488	55		

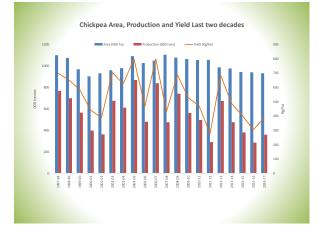
Source: M/O NFS& R, Islamabad

Pulses area, production & yield 2016-17

Сгор	Area (000 ha)	Production (000 t)	Yield (kg/ha)
Chickpea	931	359	386
Lentil	14	6.4	457
Mung bean	179	130	726
Mash (black gram)	17.1	7.2	421

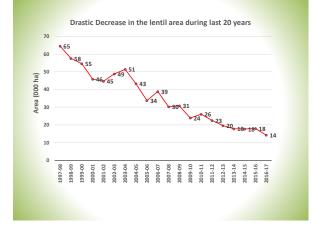
Source: Agriculture Statistics of Pakistan, 2016-17

Pulses Import 2016-17

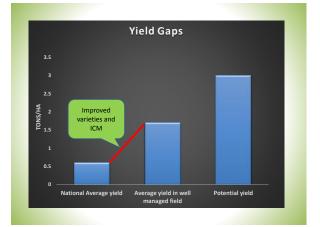

Сгор	Quantity (T)	Value (MPKR)
Chickpea	488049	44254
Lentil	193332	15092
Mung bean	2649	183
Mash (Black gram)	61207	7234
Kidney beans	79498	5689
Dried Peas	376328	25445
Others	24308	1814
Total	1225371	99721

Source: SA, (CP&L), BPS, Islamabad 2017


CHALLENGES


- Mostly grown under rain-fed marginal conditions; considered as secondary crops except Mung bean
- Drastic decline in area: especially in lentil and mash due to incentive rice-wheat production
- Instability in Yield; prone to a range of biotic and a-biotic stresses
- Changing climate: emerging new stresses
- Low yield potential: limited use of wide range of genetic diversity and desirable genes

Contd.



- Use of less inputs by farmers
- Govt. policies favor cereals production
- Limited access to quality seed of improved varieties
- Lack of mechanization
- Low investment in Pulses R&D
- Poor transfer of technology

Factors responsible for yield gap

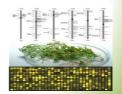
Research/Management

- Improved seed Chemical weed control
- Optimum plant population
- _ Planting method (line vs Broadcast)
- _
- Optimum planting time Ensured moisture availability at critical stages
- Nutrient management Crop mechanization _
- Appropriate plant protection measures especially in irrigated areas (pod borer in chickpea, white fly and thrips in mungbean)
- Diseases (Blight and wilt in chickpea)
- Policy
- Fixation and implementation of encouraging price
 Timely availability of quality inputs
- Regulation of imports and exports

How to bridge Yield Gap

- Promotion of Quality seeds
- Certified seed through NARS, public and private seed companies Good Agronomic Practices
 - Dissemination of new technologies
- Mechanization
 - Especially harvesting to minimize losses
- Value Chain Development
 - Development of agribusiness services to support small holders
 - Encourage the development and supply of tools for producing and processing pulses
 - Minimize the role of intermediaries
 - Value addition and collaboration with food sector

Prospects


- Research and development Increase investment in R&D
- Genetic gains: Exploitation of germplasm resources and wild accessions for breaking yield barriers
 - ➤ Traits in focus
 - Resistance to diseases
 - Heat and drought tolerance
 - Resistance to insect pests
 - Herbicide tolerance
 - Machine harvesting
 - Improved plant architecture
 - High input responsiveness

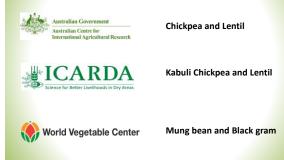
Integration of technologies

- Conventional Breeding
 - Selection of parents
 - Hybridization
 - Selection
 - Trials

- Biotechnology Tools
 - Genomics
 - Marker assisted selection
 - Tissue culture
 - DNA fingerprinting
 - Genetic engineering

Agronomic

- Refined /improved production technologies
- Encourage crop diversification (intercropping, catch cropping)
- Effect weed management
- Nutrient management especially Rhizobium inoculation
- Integrated pest management
- Socio-economic
 - Value chain management from farm level production to postharvest process,
 - packaging, transportation and marketing to improve incomes of smallholders
 - Establish 'Seed Villages' to address concerns related to quality seed production and availability


Policy

- Expansion in area: exploring new niches for introduction of pulses cultivation & crop diversification
- Build capacities of farmers with use of information communication technologies and mobile applications through educated youth, men and women
- Increase public awareness of health and nutritional benefits of pulses; deploy on-farm, participatory adaptive research and developmental approaches for technology adoption
- Improved agronomic practices awareness to bridge yield gap, minimize pre and post-harvest losses and enhance income of smallholders who mostly cultivate pulses
- Support prices/incentive or buy back mechanism
- Ensure timely availability of quality inputs

New Initiatives

- Mega Coordinated Project on Pulses "PROMOTING RESEARCH FOR PRODUCTIVITY ENHANCEMENT IN PULSES" submitted by PARC to GOP.
 - Genetic Enhancement
 - Improvement of production technologies
 - Mechanization
 - Seed supply

Strengthen International collaboration

Mung bean: Success story in Pakistan

Increase in area, production and yield due
to

- Start of Collaborative research work of national and international institutes.
- Development and Adoption of short duration, resistant to MYMV disease, more compact, having a high harvest index, reduced photoperiod sensitivity, synchronous maturity, bear pods at the top in bunches, have long pods with bold, shiny seeds and high yielding varieties.
- Inclusion of mung bean in irrigated areas and other cropping systems as catch crop, double crop and intercrop.
- Improvement in production technologies
- Post-emergence weedicides are available
 Mechanized bapyesting by combine
- Mechanized harvesting by combine harvester

- New improved varieties with disease resistance and high yield
- Improvement in the seed supply of improved mung bean varieties

Mechanized Harvesting

- Use of chemical desiccant to dry the crop
- Adjustment in wheat combine to use for mung bean harvesting

Technology dissemination farmers' Field days

Importance of Pulses in Food Security

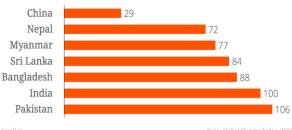
Dr. Irfan Ahmad Baig

Pakistan is one of the world's largest producers of the agricultural commodities

- Apricot (6th)
- Buffalo Milk (2nd)
- Chickpea (3rd)
- Cotton, lint (4th)
- Cotton, Seed (3rd)
- Dates (5th)
- Onion, dry (7th)
 Oranges (11th)

Mango (6th)

- Rice (12th)
- Sugarcane (5th)
- Peas (9th)
 - Wheat (8th)


Source: FAO Stat http://www.fao.org/faostat/en/#rankings/countries_by_commodity

Food Security or insecurity??

- Pakistan ranks 77th out of 109 on the Global Food Security Index
- Six out of 10 Pakistanis are food insecure.
- · Food insecurity persists although food production is sufficient to feed all Pakistanis
- Almost half of women and children under five years of age are malnourished (WFP, 2017)
- 40% of cooked food is wasted (Dawn.com, 2016)

Global Hunger Index 2017 Rank

Data: Global Hunger Index, 2017

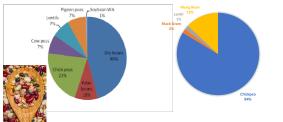
Vulnerability to Food Insecurity

"Pulses are important food crops for the food security of large proportions of populations, particularly in Latin America, Africa and Asia, where pulses are part of traditional diets and often grown by small farmers" (D.G FAQ, 2016)

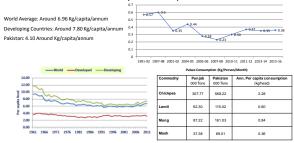
"Pulses can contribute significantly in addressing hunger, food security, malnutrition, environmental challenges and human health," (Ban Ki-moon)

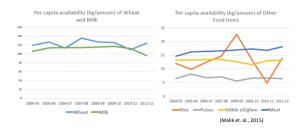
Pulses are important.....Why?

- Accessible
 Sustainable in marginal environment
 Long shelf life
- Affordable
 Considered as cheap source
- Efficient
- Low water requirement
 Environmental friendlycompared to Animal protein
- Sustainable
 Climate resilient
 Soil friendly
- Healthy
 Rich in nutrition
 Low in fats
- · Low food wastage footprints

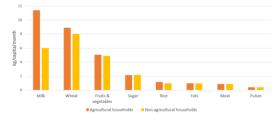


Economic importance of Pulses

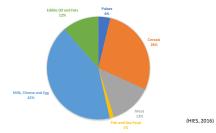

- Pulses are cultivated on 5% of the total cropped area.
- Major pulse crops grown in the country are chickpea, lentil, mong bean, black gram
- Chickpea occupies 84% of the total pulses area with 71% contribution to the total production
- Mung bean occupies 13% of total area devoted to pulses contributing 25% to the total
 pulses production
- The black gram occupies 2 % and lentil 1 % of total area with each production share of 2%


Composition of Pulses area......Pak vs World

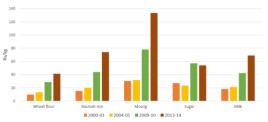
PulsesConsumption comparison

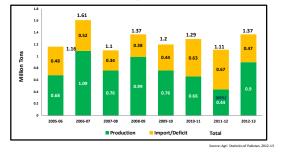


Continued.....

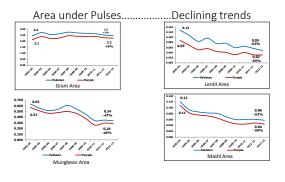


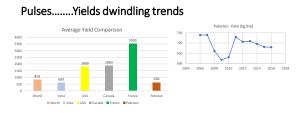
Food Diversity.....A serious concern

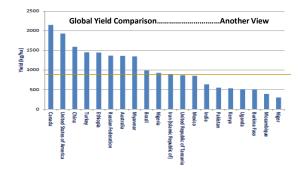

Consumption Pattern.....pulses are last priority (Around 3-4 percent)



Share of Food Expenditure......Pulses at the bottom




Price trendsPulses are escalating on a faster speed



Overall national deficit in pulses

Activities	Major Crops	Pulses
Competition with major crops in	Wheat (Rabi)	Chickpea and lentil
terms of preference	Rice and Cotton (Kharif)	Mung and mash
Chemical weedicides	Available	Not available
Heavy rains	Mostly beneficial	Damage crop
Frost impact	Little	Severe
Harvesting	Mechanical	Manual
Crop security	Generally secured	Risky
Post harvest losses	Little	Severe
Income	Definite	Not sure

What Should We Do?

- Promoting and sustaining consumption
- Supporting production
- Strengthening the value chain

Promoting and Sustaining Consumption

- Awareness: Health and nutritional benefits of pulses
- Procurement: Thru public intervention
- Investment: In product innovation
- Promotion: R&D for innovative recipes

Supporting Production

- Investment: R&D to improve productivity
- Investment: Breeding climate smart varieties
- Development: Seed systems that empower smallholders
- Cropping systems: Taking advantage of the beneficial impacts of pulses
- Market reforms: Stable incomes for farmers

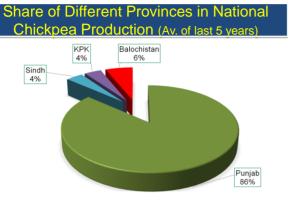
Strengthening the Value Chain

- Networks: Pulse commodity associations and organizations
- Storage: warehouses and logistics
- Technology: Processing legumes
- Public intervention: Monitoring market intermediaries
- Commercialization

Area, Yield and Production of Pulses of Pakistan

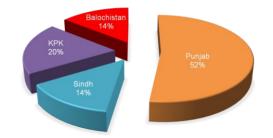
Year	Area (ha)	Yield (hg/Ha)	Production (Tones)
2006	163800	7381	120900
2007	163200	7390	120600
2008	154800	6609	102300
2009	179400	6176	110800
2010	231700	6301	146000
2011	175800	7287	128100
2012	212000	7057	149600
2013	207000	7087	146700
2014	197100	6956	137100
2015	192452	6805	130958
2016	205399	6787	139397
			(FAO STAT, 2017)

PULSES BREEDING IN PAKISTAN: Current Status and Future Needs

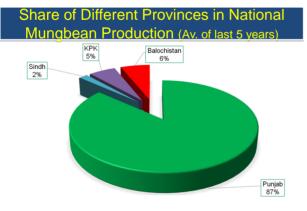

PULSES ?

	Rabi Pulses	Kharif Pulses
Low Rainfall (213.0 mm)	Chickpea	Mungbean
High Rainfall (957.9 mm)	Lentil	Mashbean

Pulses Area and Production

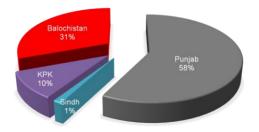

CROP	AREA (000 Ha)			DUCTION 0 Tones)
	Punjab	Punjab Pakistan		Pakistan
Chickpea	854.9	945.0	227.2	312.0
Lentil	11.3	17.0	4.0	8.6
Mung	133.1	140.3	93.9	98.0
Mash	12.7	19.2	4.9	7.6

Source: Bureau of Statistics 2015-16, Pakistan



Source: Bureau of Statistics, Pakistan

Share of Different Provinces in National Lentil Production (Av. of last 5 years)



Source: Bureau of Statistics, Pakistan

Source: Bureau of Statistics, Pakistan

Share of Different Provinces in National Mashbean Production (Av. of last 5 years)

Source: Bureau of Statistics, Pakistan

Future Requirements in Pakistan

CROP	Cu	rrent	Projec	ted 2020	Projec	ted 2025
	Population (Millions)	Requirement (000 tones)	Population (Millions)	Requirement (000 tones)	Population (Millions)	Requirement (000 tones)
Chickpea	208	474	220	502	227	518
Lentil	208	125	220	132	227	136
Mung	208	175	220	185	227	191
Mash	208	75	220	79	227	82

Requirement based on consumption per capita (kg/annum) Chickpea= 2.28; Lentil= 0.60; Mung= 0.84; Mash= 0.36

Bureau of Statistics

Gap in Production and Requirement of Pakistan

		Current		Projected 2020		Projected 2025		25	
Crop	Produ- ction (000 T)	Require- ment (000 T)	Gap (000 T)	Produ- ction (000 T)	Require- ment (000 T)	Gap (000 T)	Produ- ction (000 T)	Require- ment (000 T)	Gap (000 T)
Chick pea	312.0	474	-162.0	312.0	502	-190	312.0	518	-206.0
Lentil	8.6	125	-116.4	8.6	132	-123.4	8.6	136	-127.4
Mung	98.0	175	-77.0	98.0	185	-87	98.0	191	-93.0
Mash	7.6	75	-67.4	7.6	79	-71.4	7.6	82	-74.4

Institutes Working on Pulses

S. No.	Name of Institute			
1	Pulses Research Institute (PRI), Faisalabad.			
2	Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad.			
3	Arid Zone Research Institute (AZRI), Bhakkar.			
4	Barani Agricultural Research Institute (BARI), Chakwal.			
5	Regional Agricultural Research Institute (RARI), Bahawalpur.			
6	National Agriculture Research Centre, Islamabad.			
7	Agriculture Research Institute, Mangora, Swat.			
8	Nuclear Institute for Food and Agriculture, Tarnab, Peshawar.			
9	Arid Zone Research Centre, DI Khan.			
10	Agriculture Research Institute, Sariab, Quetta.			
11	Agriculture Research Institute, Tandojam, Sindh.			

Varieties Released in Pakistan

Crop	Varieties Released
Chickpea	40
Mungbean	24
Lentil	12
Mash	6
Drypeas	1
Mothbean	1

Breeding Thrust

> CHICKPEA

· Drought, Cold, Heat, Blight, Wilt and Weeds

> LENTIL

• Drought, Heat, Rust and Weeds

> MUNGBEAN AND MASH

- · Heat, Drought, Heavy Rains
- Mungbean Yellow Mosaic Virus & Urdbean Leaf Crickle Virus
- · Insect pests
- Weeds

General Issues

- Grown on marginal lands /poor soils
- * Non-availability of quality seed
- Climate change- Erratic rainfall
- Slow dissemination of approved varieties
- Decrease in area
- Decline in production
- Change in cropping pattern
- * Gap between national average yield and potential yield
- $\boldsymbol{\diamondsuit}$ Low priority crops

Ways to Increase Pulses Production

Increasing area under Pulses cultivation

Genetic improvement of pulses varieties to compete major crops in term of economic return

- By Intercropping Pulses in Sugarcane
- By Growing Mung & Mash as Catch Crop between Wheat & Rice
- Development of Pulses varieties with high biomass and high harvest index
- Suitable for intercropping and catch crop in major cropping systems
- Responsive to high inputs and high moisture level

Farmer's field

Current Status of Breeding Pulses

Creation of genetic variation

- ≻Introduction
- ➤Hybridization
 - ✓ Selection of parents
 - ✓ Crossing techniques
 - \checkmark Handling of segregating populations
- Mutation
- Selection within that variation
- Evaluation of selected lines
- Marker assisted selection for disease tolerance in

mungbean

Introduction of Genotypes

Introduction is generally facilitated by the following ways:

- Exchange of material with fellow plant breeders
- Exploration of areas showing rich variation of the species
- Obtaining genetic resources from international institutes / organizations

Hybridization

Combining desirable traits from two or more parents into a single cultivar.

Selection of Parents

•When the aim is to replace the existing variety with a superior one, the existing variety with adaptation to the local environment is a logical choice as one parent. The second parent must be so chosen that it complements the first parent.

•If creation of variation for the desired traits is the objective, then diverse parents are selected.

Crossing Technique

 success of the artificial hybridization ranges from 10% to 50%

The success rate of artificial hybridization can be increased by:

- Selection of large flower buds
- Selection of lateral buds rather than the terminal ones
- Avoiding mechanical injury to the floral parts at the time of emasculation and pollination
- Attempting hybridization after the formation of the first pod.

• Under low temperature emasculation is done in the afternoon and pollination in the next morning .

- In case of high temperature followed by immediate pollination is recommended (in rabi pulses).
- SINGLE CROSS: Used to transfer resistance against biotic and abiotic stresses.

THREE WAY CROSSES: The progenies of three-way crosses are more variable with wide genetic base than single crosses.

MULTIPLE CROSSES: The cultivars developed from multiple crosses are expected to have wider adaptation for a range of environments.

Handling of Segregating Populations

Selection methods:

- Pedigree method: for selection for resistance to biotic stresses.
- Bulk method: used for the development of high yielding and short duration varieties.
- Modified bulk method: for selection of traits such as abiotic stresses, seed size, earliness and plant type.

Mutation Breeding

This technique is being practiced by Agricultural Organizations under PAEC, Islamabad for developing varieties;

Ionizing radiations

- Particulate radiation: alpha rays, beta rays, fast and thermal neutrons
 - \circ Non-particulate radiation: x-rays, and gamma rays
 - o Non-ionizing radiation: ultraviolet (UV) radiation
- Chemical mutagens

Future Needs / Strategies				
Сгор	Desired Improvement	Benefits		
Chickpea	 Short duration /Earliness in maturity Input responsive and disease tolerant genotypes Refinement of production technology for irrigated areas 	Chickpea popularization in irrigated areas.		
Lentil	 High harvest index Disease tolerant genotypes Genotypes suitable for intercropping Refinement of production technology 	 Lentil popularization in irrigated areas Increased area & production 		

Crop	Desired Improvement	Benefits
Mash	 Short duration varieties Suitable genotypes for spring and kharif season Zone specific genotypes Climate smart production technology 	 As catch crop in rice- wheat cropping system Two crops (spring and kharif season) will become possible Increase in area & production
Mung	 Short duration (60-65 days) varieties Heat tolerant genotypes Resistance against <i>Cercospora</i> Leaf spot disease Climate smart production technology 	 Increase reliability Stability in production As catch crop in rice- wheat cropping system

Steps to Boost Production

- > Availability of quality seed to the farmers
- > Mechanization of sowing and harvesting operations
- > Popularizing the use of rhizobial culture
- Dissemination of improved production technology through electronic , print media and extension staff
- Training of scientists at International Organizations

? ANY QUESTION ?

?

THANKS

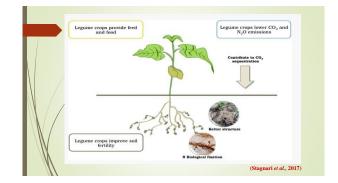
Microbial inoculation for sustainable production of Legumes

Institute of Soil & Environmental Sciences University of Agriculture, Faisalabad

Importance of Legumes

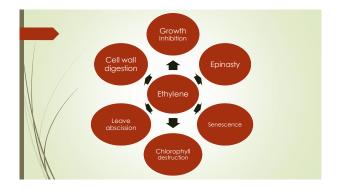
Legume crops could play an important role by delivering multiple services in line with sustainability principles:

- By serving as fundamental, worldwide source of high-quality food and feed
- Legumes contribute to reduce the emission of greenhouse gases, as they release 5–7 times less GHG per unit area compared with other crops
- >Allow the sequestration of carbon in soils with values estimated from 7.21 g kg⁻¹ DM, 23.6 versus 21.8 g C kg⁻¹ year
- Save fossil energy inputs in the system by N fertilizer reduction, corresponding to 277 kg ha⁻¹ of CO₂ per year (Stagmari et al., 2017)


Legumes perform well in conservation & intercropping systems, important in developing countries as well as in low-input and lowyield farming systems

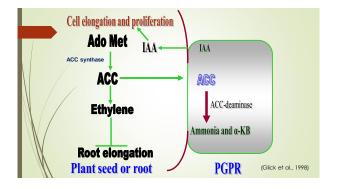
- Legumes fix the atmospheric nitrogen
- Improve soil quality by addition of organic matter through plant biomass

>Facilitate soil nutrients' circulation and water retention


Based on these multiple functions, legume crops have high potential for conservation agriculture, being functional either as growing crop or as crop residue

(Stagnari et al., 2017)

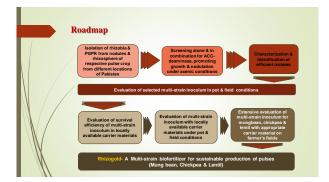
- Among different constraints contributing for their low productivity, elevated level of stress hormone i.e. ethylene in response to various biotic and abiotic stresses is considered as major one.
- Its negative role in the failure of legume-rhizobium symbioses is well known. (Shahroona et al. 2011)

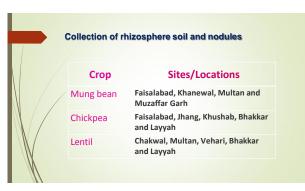


Inhibition of Ethylene Action/Synthesis

- Chemical Approaches
- Ag^{+,} inhibitor of ethylene action
- AVG (aminoethoxyvinyle glycine), ethylene synthesis inhibitor
- AOA (aminooxyacetic acid), ethylene synthesis inhibitor

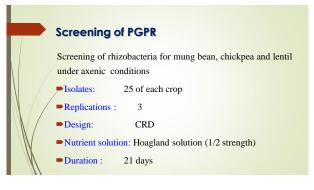
(Guinel and Sloetjes, 2000)

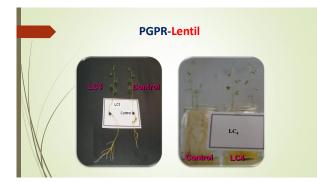

- **Biological** Approach
- Use of microbes with ACC-deaminase activity (Mayak et al., 1999)



Co-inoculation with Rhizobia and PGPR containing ACC-deaminase

- Reduction in ethylene level
- Direct stimulation of rhizobial growth/survival in the soil
- Enlargement of the root system by hormone production for enhanced nutrient uptake and increase in the number of potential colonization sites by rhizobium
- Phosphate solubilization
- Pathogen suppression due to production of antibiotics
 (Gull et al., 2004)

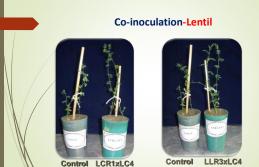



	150	plation of rhizobia an	UFUER
	Crop	PGPR (25 isolates of each crop)	Rhizobia (25 isolates of each crop)
	Mung bean		FS1, FS2, FS3, FS4, FS5, FS6, FS7, KH1, KH2, KH3, KH4, KH6, MN1, MN2, MN3, MN4, MN6, MG1, MG2, MG3, MG4, MG6
	Chickpea		BK1, BK2, BK3, BK4, BK5, FSC1, FSC2, FSC3, FSC4, FSC5, JH1, JH2, JH3, JH4, JH5, KS1, KS2, KS3, KS4, KS5, LY1, LY2, LY3, LY4, LY5
V	Lentil	LC4, LC5, LL1, LL2, LL3, LL4, LL5,	LBR1, LBR2, LBR3, LBR4, LBR5, LCR1, LCR2, LCR3, LCR4, LCR5, LLR1, LLR2, LLR3, LLR4, LLR5, LMR1,LMR2, LMR3, LMR4, LMR5, LVR1, LVR2, LVR4, LRV5

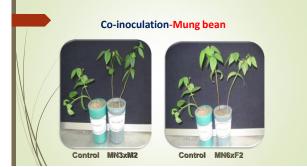
Measurement of ACC-deaminase activity

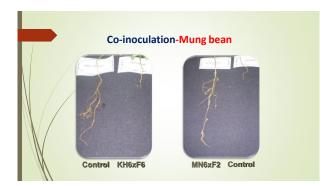
	Crop	High [OD580> 0.75]	Medium [OD580: 0.50-0.75]	Low [OD580: <0.50]
	Mung bean	F2,M2,K5,K6,F6, R4,R6	F1,F3,F4,F7, K1,K4,M1,R2, M4,M3,R5	F5,K2,K3,R3, M6,M5
	Chickpea	B2,L5,J1,J3,L4, B5	B1,J4,J5,FC3 L3,K2,K3,K4, L2,K1	B3,B4,J2,FC1,F C2,L1,FC5, K5,FC4
	Lentil	LM4,LV2,LL2, LC4,LC3,LB5, LB2	LB3,LC1,LC2, LM3,LV3,LV4, LV1	LB1,LB4,LC5, LL1,LL3,LL4, LL5,LV5,LM5, LM2,LM1

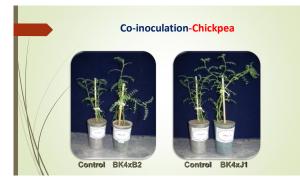


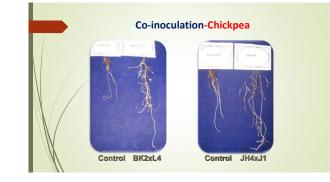


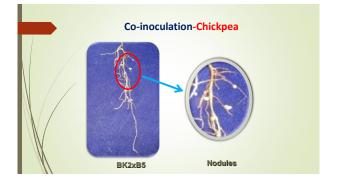








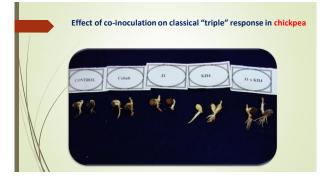

Control LCR1xLC4



CLASSICAL "TRIPLE" RESPONSE

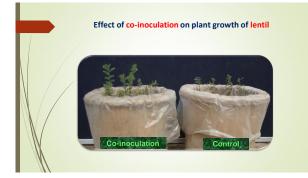
Classical triple response is a reliable marker to study the effect of ethylene on plant growth.

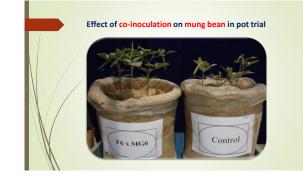

Response demonstrating


•Inhibition of stem elongation

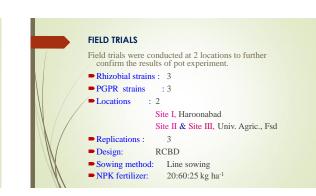
•Swelling of stem

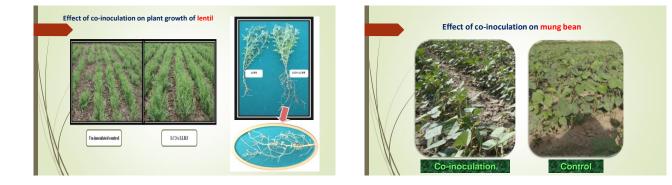
•Changes in the direction of growth

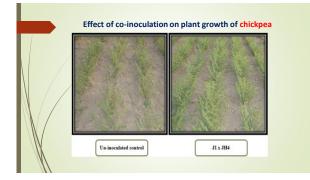


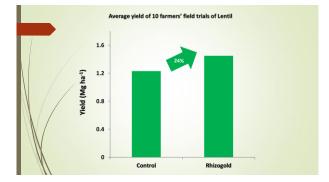


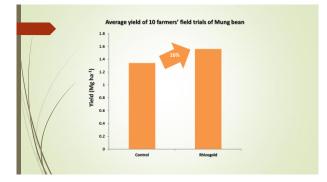
POT TRIAL


 Strains from three selected effective combinations of PGPR containing ACC-deaminase and rhizobia along with possible combinations were evaluated for their potential to improve growth and yield of lentil

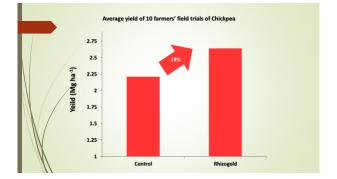

- ► Location: Wire house of ISES, UAF
- Rhizobial strains: 3
- ► PGPR strains : 3
- Replications : 6
- ► NPK fertilizer : 20:60:25 kg ha⁻¹







	Mun	g bean strains	Chie	ckpea strains	Lentil	strains
	Code	Strain	Code	Strain	Code	Strain
	F2	Pseudomonas syringae	J1	Vibrios diazotrophicus	LB5	Pseudomonas bathycetes
			-		LC3	Vibrios vulnificus
	F6	Pseudomonas fluorescens biotype G	B5	Chrysobacterium gleum	LC4	Flavobacterium ferrugineus
	MN6	Rhizobium phaseoli	Bk2	Mesorhizobium ciceri	LBR2	Rhizobium leguminosarum
	MG6	Rhizobium phaseoli	Bk4	Mesorhizobium ciceri	LCR1	Rhizobium leguminosarum
W	KH6	Rhizobium phaseoli	JH4	Mesorhizobium ciceri	LCR3	Rhizobium leguminosarum



Conclusion

- Microbial inoculation is an effective tool for sustainable production of legumes
- Application of *Rhizobium* significantly improved, nodulation efficiency of legumes
- > Application of PGPR enhanced growth and yield of legumes through various mechanisms
- Co-inoculation of *Rhizobium* and PGPR possessing ACC-deaminase activity is more efficient in improving nodulation, growth and yield of legumes

Areas under Fine tuning

- Endophytes + Mesorhizobium in chickpea under drought
- Endophytes with carbonic anhydrase in cereals under moisture stress
- Allelopathic bacteria
- Rhizobium inoculation of cereals under saline condition for following legume crop
- Substrate dependent microbial production of auxins for soybean production

